Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column
Abstract
1. Introduction
1.1. Background
1.2. Research Significance
2. Experimental Progress
2.1. Specimen Designed
2.2. Material Setting
2.3. Data Collection and Loading Device
2.4. Measurement Procedure
3. Analysis of Test Results
3.1. Test Phenomenon
3.2. Destruction Phenomenon
3.3. Load-Displacement Curve Analysis
3.4. Stress-Strain Behavior Analysis
3.4.1. Loading Longitudinal Strain
3.4.2. Transverse Strain
4. Quantitative Analysis
4.1. Calculation of Compressive Strength of CFRP-Confined Wooden Columns
4.2. Ductility Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, M.G.; Huang, Y.S.; Kan, Y.C.; Wang, Y.C.; Chen, Y.S.; Kao, S.C. Experimental study on durability of CFRP-strengthened wood member. J. Mater. Res. Technol. 2023, 24, 3704–3716. [Google Scholar] [CrossRef]
- Li, H.M.; Qiu, H.X.; Lu, Y. An analytical model for the loading capacity of splice-retrofitted slender timber columns. Eng. Struct. 2020, 225, 111274. [Google Scholar] [CrossRef]
- Han, Y.D.; Chun, Q.; Xu, X.M.; Teng, Q.; Dong, Y.; Lin, Y. Wind effects on Chinese traditional timber buildings in complex terrain: The case of Baoguo Temple. J. Build. Eng. 2022, 59, 105088. [Google Scholar] [CrossRef]
- Ji, W.; Ding, Y.; Hu, C.K. Research on einforcement and repair method of wood structure of ancient buildings in Huizhou. Sci. Technol. Innov. 2019, 10, 120–126. [Google Scholar]
- Corradi, M.; Vemury, C.M.; Edmondson, V.; Poologanathan, K.; Nagaratnam, B. Local FRP reinforcement of existing timber beams. Compos. Struct. 2021, 258, 113363. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Z.; He, L.; Tam, L.-H. Experimental study on the static and fatigue performances of GFRP-timber bolted connections. Compos. Struct. 2023, 304, 116435. [Google Scholar] [CrossRef]
- Fernando, D.; Frangi, A.; Kobel, P. Behaviour of basalt fibre reinforced polymer strengthened timber laminates under tensile loading. Eng. Struct. 2016, 117, 437–465. [Google Scholar] [CrossRef]
- Rescalvo, F.J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips. Compos. Struct. 2018, 186, 29–38. [Google Scholar] [CrossRef]
- Cui, W.Q.; Fernando, D.; Heitzmann, M.; Gattas, J.M. Manufacture and structural performance of modular hybrid FRP-timber thin-walled columns. Compos. Struct. 2021, 260, 113506. [Google Scholar] [CrossRef]
- Huang, J.; She, Y.; He, J. Effect of CFRP winding modes on axial compressive damage performance of wood components. Constr. Build. Mater. 2024, 426, 136148. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.T.; Fei, B.H.; Ashraf, M.; Xiong, Z.; Lorenzo, R.; Fang, C. Axial compressive performance of laminated bamboo column with aramid fiber reinforced polymer. Compos. Struct. 2021, 258, 113398. [Google Scholar] [CrossRef]
- Hugo, C.B.; David, C.; Carlos, C. Analysis of the debonding process of CFRP-to-timber interfaces. Constr. Build. Mater. 2016, 113, 96–112. [Google Scholar]
- Abbas, V.; Rijun, S.; Keith, C. Effective bond length and bond behaviour of FRP externally bonded to timber. Constr. Build. Mater. 2017, 151, 742–754. [Google Scholar] [CrossRef]
- GB 50005-2017; Standard for Design of Timber Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2017.
- GB 50608-2010; Technical code for infrastrucure application of FRP composites. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2010.
- Liu, S.W.; Lei, Y.X.; Zhang, J.W.; Zhao, J.; Bai, C.; Hu, Q. Experimental study and analysis on bonding strength of CFRP-wood interface. Int. J. Adhes. Adhes. 2023, 123, 103335. [Google Scholar] [CrossRef]
- GB/T 50329-2012; Standard for Test Methods of Timber Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012.
- Xie, Q.F.; Zhang, M.; Zhang, L.F. Mechanical properties test and degradation model of naturally cracked wooden columns. J. Build. Struct. 2022, 43, 210–222. [Google Scholar]
- Hosseinihashemi, S.K.; Arwinfar, F.; Najafi, A.; Nemli, G.; Ayrilmis, N. Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement 2016, 86, 202–208. [Google Scholar] [CrossRef]
- Asha, Y.; Zhou, C.D.; Yang, L. Experimental study on axial compression behavior of composite reinforced timber columns. China Civ. Eng. J. 2021, 54, 1–9. [Google Scholar]
- Peng, S.; Qiao, Y.; Song, Y. Analysis of mechanical properties of four-section composite columns of Pinus sylvestris var. mongolia of ancient wooden architecture under axial compression load. Buildings 2024, 14, 24–38. [Google Scholar] [CrossRef]
- Kia, L.; Valipour, H.R. Composite timber-steel encased columns subjected to concentric loading. Eng. Struct. 2021, 232, 111825. [Google Scholar] [CrossRef]
- Andre, J.; Massimo, F. General notes on ductility in timber structures. Eng. Struct. 2011, 33, 2987–2997. [Google Scholar] [CrossRef]
- Karkoodi, S.; Karampour, H.; Gilbert, B.P.; Gunalan, S. A study on enhanced mechanical properties of wood in the parallel-to-grain direction in timber-filled-steel tubular columns. Eng. Struct. 2025, 331, 119973. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Lim, J.C.; Vincent, T. FRP-confined concrete in circular sections: Review and assessment of stress–strain models. Eng. Struct. 2013, 49, 1068–1088. [Google Scholar] [CrossRef]
- Kia, L.; Hamid, R.V.; Tohid, G.G. Experimental and numerical investigation of concentric axial loading on bar-reinforced composite timber columns at a large scale. Structures 2024, 60, 105920. [Google Scholar] [CrossRef]
Specimen | CFRP Layers | Length of the Upper Base h1/mm | Length of the Lower Base h2/mm | Tenon Thickness b/mm | Length of Tenon L/mm | Ultimate Load-Bearing Capacity/MPa | |
---|---|---|---|---|---|---|---|
MC-1 | a | 1 | 16 | 20 | 20 | 90 | 388.85 |
b | |||||||
MC-2 | a | 1 | 20 | 25 | 25 | 90 | 372.91 |
b | |||||||
MC-3 | a | 1 | 24 | 30 | 30 | 90 | 347.53 |
b | |||||||
MC-4 | a | 3 | 24 | 30 | 30 | 60 | 316.16 |
b | |||||||
MC-5 | a | 3 | 24 | 30 | 30 | 30 | 310.86 |
b |
Material | Elastic Modulus/MPa | Poisson’s Ratio | Shear Modulus of Elasticity/MPa |
---|---|---|---|
Pinus sylvestris var. mongolia | 10,562 | 0.3 | 706 |
Material | Tensile Strength/MPa | Elastic Modulus/GPa | Elongation | Thickness/mm |
---|---|---|---|---|
CFRP | 3739 | 215 | 1.17% | 0.111 |
Epoxy resin | 50 | 3.62 | 3.21% | - |
Specimen | Theoretical Value/kN | Test Value/kN | Theoretical Value/Test Value |
---|---|---|---|
MC-1 | 666.78 | 548.2 | 1.21 |
MC-2 | 663.58 | 556.2 | 1.19 |
MC-3 | 658.24 | 546.3 | 1.20 |
MC-4 | 839.07 | 494.95 | 1.69 |
MC-5 | 838.23 | 542.25 | 1.55 |
Specimen | Destruction Displacement/mm | Ultimate Load-Bearing Capacity/kN | Increased Bearing Capacity/% |
---|---|---|---|
MC-1 | 12.757 | 548.2 | 41.0% |
MC-2 | 13.424 | 556.2 | 49.2% |
MC-3 | 9.538 | 546.3 | 57.2% |
MC-4 | 13.797 | 494.95 | 56.6% |
MC-5 | 11.385 | 542.25 | 74.5% |
Specimen | Average Stiffness/kN·m−1 | Average Ductility Coefficient | Increased Stiffness/% | Ductility Coefficient Increases/% |
---|---|---|---|---|
MC-1 | 198.89 | 5.56 | 80.3% | 15.1 |
MC-2 | 197.76 | 4.67 | 63.59% | 12.0 |
MC-3 | 179.87 | 7.945 | 62.44% | 82.6 |
MC-4 | 176.63 | 6.145 | 58.56% | 4.3 |
MC-5 | 224.31 | 5.582 | 135.8% | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Lou, W.; Qiao, Y.; Liu, L.; Liu, H.; Wu, D. Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column. Buildings 2025, 15, 3173. https://doi.org/10.3390/buildings15173173
Peng S, Lou W, Qiao Y, Liu L, Liu H, Wu D. Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column. Buildings. 2025; 15(17):3173. https://doi.org/10.3390/buildings15173173
Chicago/Turabian StylePeng, Sheng, Wei Lou, Yifan Qiao, Lanyu Liu, Huacheng Liu, and Dongping Wu. 2025. "Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column" Buildings 15, no. 17: 3173. https://doi.org/10.3390/buildings15173173
APA StylePeng, S., Lou, W., Qiao, Y., Liu, L., Liu, H., & Wu, D. (2025). Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column. Buildings, 15(17), 3173. https://doi.org/10.3390/buildings15173173