Impact of Low-Activity Coal Gangue on the Mechanical Properties and Microstructure Evolution of Cement-Based Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Mix Design and Specimen Preparation
2.2.1. Mix Design
2.2.2. Specimen Preparation
2.2.3. Paste Sample Preparation for the Microscopic Test
2.3. Experimental Method
2.3.1. Thermogravimetric Analysis (TGA)
2.3.2. XRD
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Assessment of Pozzolanic Activity
2.3.5. Compressive Strength
2.3.6. Microhardness
2.3.7. EIS
2.4. Activation Treatment of Coal Gangue
3. Results and Discussion
3.1. Pozzolanic Activity of the Calcined Coal Gangue
3.2. The Effect of Activated Coal Gangue on the Compressive Strength of Cement-Based Materials
3.3. The Influence of Activated Coal Gangue on the Microhardness of Cement-Based Materials
3.4. The Effect of Activated Coal Gangue on the EIS Parameter
3.5. The Effect of Activated Coal Gangue on the Phase Assemblage
3.5.1. Analysis of Ettringite and AFm Phases in Different Systems
3.5.2. Changes in Portlandite and Carboaluminate (Mc + Hc) Content in Different Systems
3.6. The Action Mechanism of Low-Activity Coal Gangue in Cement
4. Conclusions
- According to the pozzolanic activity test, coal gangue with a low kaolinite content exhibits optimal activity when calcined at 800 °C for 4 h. Increasing the calcination temperature further could deactivate the active substances, worsening the activity.
- The binary systems with only CCG exhibit better mechanical properties than the corresponding ternary systems with CCG and LS. When limestone powder is added, it does not significantly enhance performance, possibly attributed to the fact that carboaluminates formed from the low-activity coal gangue and limestone powder could not effectively compensate for the performance decline caused by the reduced cement.
- The pozzolanic reaction in the mid to late stages, by consuming CH, generates a large amount of C-S-H gel, enhancing the compactness of the material structure. EIS demonstrated the highest Rccp values, characterizing the microstructure of the cementitious materials based on activated coal gangue with low kaolinite content. The microhardness tests further reflect the mechanical properties of the materials from a microscopic perspective, especially showing optimal performance at substitution rates of 10% to 15%.
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.; Su, Y.; He, X.; Tan, H.; Jiang, Y.; Zeng, L.; Strnadel, B. Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash. Fuel Process. Technol. 2018, 181, 75–90. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Bureau of Statistics of China (National Data). 2012. Available online: https://www.stats.gov.cn/search/english/s?qt=coal (accessed on 22 July 2025).
- Spencer, D. BP Statistical Review of World Energy; World Energy: London, UK, 2019; Volume 68, pp. 1–69. [Google Scholar]
- Haibin, L.; Zhenling, L. Recycling utilization patterns of coal mining waste in China. Resour. Conserv. Recycl. 2010, 54, 1331–1340. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Zhu, X.; Kang, X.; Deng, J.; Yang, K.; Jiang, S.; Yang, C. Chemical and physical effects of high-volume limestone powder on sodium silicate-activated slag cement (AASC). Constr. Build. Mater. 2021, 292, 123257. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Yang, K.; Yu, L.; Yang, C. Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cem. Concr. Compos. 2020, 114, 103782. [Google Scholar] [CrossRef]
- Zunino, F.; Scrivener, K. The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem. Concr. Res. 2021, 140, 106307. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.; Yang, Y. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties. Appl. Energy 2021, 292, 116845. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Su, Y. Influence of poker vibration on aggregate settlement in fresh concrete with variable rheological properties. J. Mater. Civ. Eng. 2019, 31, 04019128. [Google Scholar] [CrossRef]
- Gettu, R.; Patel, A.; Rathi, V.; Prakasan, S.; Basavaraj, A.S.; Palaniappan, S.; Maity, S. Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context. Mater. Struct. 2019, 52, 10. [Google Scholar] [CrossRef]
- Berriel, S.S.; Favier, A.; Domínguez, E.R.; Machado, I.S.; Heierli, U.; Scrivener, K.; Hernández, F.M.; Habert, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Khedher, K.M. Experimental Behavior of Self Compacting Concrete Using Red Mud. Mesopotamian J. Civ. Eng. 2023, 2023, 10–17. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.; Huang, T.; Ji, M.; Li, Y.; Fan, Y. Research on mineralogy and flotation for coal-series kaolin. Appl. Clay Sci. 2017, 136, 37–42. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X. Properties of coal gangue-Portland cement mixture with carbonation. Fuel 2019, 245, 1–12. [Google Scholar] [CrossRef]
- Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. Limestone calcined clay cement and concrete: A state-of-the-art review. Cem. Concr. Res. 2021, 149, 106564. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.M.; ur Rehman, Z.; Ijaz, Z.; Junaid, M.F. Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Sci. Total Environ. 2024, 907, 167794. [Google Scholar] [CrossRef]
- Luo, K.; Li, J.; Zeng, J.; Ding, Q.; Shen, A.; Luo, Z. Study on the Performance of Activated Coal Gangue-Limestone Composite Cement. J. Wuhan Univ. Technol. 2022, 44, 10–15. [Google Scholar]
- Frías, M.; Sanchez de Rojas, M.I.; García, R.; Valdés, A.J.; Medina, C. Effect of activated coal mining wastes on the properties of blended cement. Cem. Concr. Compos. 2012, 34, 678–683. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, T.C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials–A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Hou, P.; Ma, J.; Zhou, H. Feasibility study on the preparation of ternary blended cements with low-kaolinite calcined coal gangue and limestone. Constr. Build. Mater. 2024, 449, 138478. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, H.; Wu, C.; Chen, H.; Sun, J.; Liu, J. Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism. Powder Technol. 2020, 368, 112–124. [Google Scholar] [CrossRef]
- Huo, X.; Jia, X.; Song, C.; Hao, S.; Zhang, D.; Ding, Y.; Liu, S.; Zhang, W. Investigation of co-pyrolysis characteristics of modified coal gangue and biomass. Thermochim. Acta 2021, 705, 179033. [Google Scholar] [CrossRef]
- Souri, A.; Kazemi-Kamyab, H.; Snellings, R.; Naghizadeh, R.; Golestani-Fard, F.; Scrivener, K. Pozzolanic activity of mechanochemically and thermally activated kaolins in cement. Cem. Concr. Res. 2015, 77, 47–59. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Yang, F.; Zhang, S.; Zhang, H.; Zhu, Y.; An, J. Thermal activation of high-alumina coal gangue auxiliary cementitious admixture: Thermal transformation, calcining product formation and mechanical properties. Materials 2024, 17, 415. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, Y.; Liu, X.; Sun, H.; Ni, W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 2013, 109, 527–533. [Google Scholar] [CrossRef]
- Hu, Y.; Han, X.; Sun, Z.; Jin, P.; Li, K.; Wang, F.; Gong, J. Study on the reactivity activation of coal gangue for efficient utilization. Materials 2023, 16, 6321. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Yan, C.; Bold, T.; Wang, J.; Cui, K. Effect of activated coal gangue on the hydration and hardening of Portland cement. Constr. Build. Mater. 2024, 422, 135740. [Google Scholar] [CrossRef]
- Shao, Z.; Cao, M. Hydration mechanism of limestone calcined clay cement containing calcined coal gangue. Constr. Build. Mater. 2024, 438, 136906. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Hu, Y.; Wang, J.; Ma, J.; Jiang, R.; Sun, J. Influence of Curing Temperature on the Performance of Calcined Coal Gangue–Limestone Blended Cements. Materials 2024, 17, 1721. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Wang, D.H.; Shi, C.J.; Farzadnia, N.; Shi, Z.G.; Jia, H.F.; Ou, Z.H. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Ding, M. Hydration process in Portland cement blended with activated coal gangue. J. Zhejiang Univ. A 2011, 12, 503–510. [Google Scholar] [CrossRef]
- Arikan, M.; Sobolev, K.; Ertün, T.; Yeğinobali, A.; Turker, P. Properties of blended cements with thermally activated kaolin. Constr. Build. Mater. 2009, 23, 62–70. [Google Scholar] [CrossRef]
- Kuliffayová, M.; Krajči, L.; Janotka, I.; Šmatko, V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J. Therm. Anal. Calorim. 2011, 108, 425–432. [Google Scholar] [CrossRef]
- Krishnan, S.; Bishnoi, S. A numerical approach for designing composite cements with calcined clay and limestone. Cem. Concr. Res. 2020, 138, 106232. [Google Scholar] [CrossRef]
- BS EN 196-1:2016; Methods of Testing Cement Part 1: Determination of Strength. European Standards: Plzen, Czech Republic, 2016. Available online: https://store.accuristech.com/standards/bs-en-196-1-2016?product_id=1915781 (accessed on 22 July 2025).
- Hetzner, D.W. Microindentation hardness testing of materials using ASTM E384. Microsc. Microanal. 2003, 9, 708–709. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.K.; Paufler, P. Micro- and nanoindentation techniques for mechanical characterisation of materials. Int. Mater. Rev. 2006, 51, 209–245. [Google Scholar] [CrossRef]
- Sui, S.; Jiang, C.; He, G.; Shan, Y.; Li, S.; Wang, F.; Wang, X.; Wu, M.; Jiang, J. Investigation on the compressive strength, chloride migration of MK-FA-LS blended cementitious materials with electrochemical techniques. J. Build. Eng. 2024, 95, 110287. [Google Scholar] [CrossRef]
- Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 2000, 30, 1723–1730. [Google Scholar] [CrossRef]
- Jiang, T.; Li, G.; Qiu, G.; Fan, X.; Huang, Z. Thermal activation and alkali dissolution of silicon from illite. Appl. Clay Sci. 2008, 40, 81–89. [Google Scholar] [CrossRef]
Chemical Composition | CaO | MgO | SiO2 | Fe2O3 | Al2O3 | K2O | Na2O |
---|---|---|---|---|---|---|---|
OPC | 62.98 | 3.05 | 19.99 | 3.63 | 4.61 | 0.79 | 0.31 |
CG | 3.93 | 1.08 | 51.47 | 17.96 | 15.28 | 6.24 | 0.00 |
LS | 98.07 | 0.35 | 0.59 | 0.11 | 0.43 | 0.00 | 0.24 |
Group | OPC (g) | CG (g) | LS (g) | Gypsum (g) | Water (g) | Water Reducer (g) |
---|---|---|---|---|---|---|
OPC | 100.00 | 0 | 0 | 0 | 50 | 0 |
CCG-10 | 89.70 | 10 | 0 | 0.30 | 50 | 0.15 |
CCG-15 | 84.55 | 15 | 0 | 0.45 | 50 | 0.15 |
CCG-20 | 79.40 | 20 | 0 | 0.60 | 50 | 0.15 |
SC-15 | 84.70 | 10 | 5.00 | 0.30 | 50 | 0.15 |
SC-22.5 | 77.50 | 15 | 7.50 | 0.45 | 50 | 0.15 |
SC-30 | 69.40 | 20 | 10 | 0.60 | 50 | 0.15 |
Content (%) | Kaolinite | Illite | Muscovite | SiO2 |
---|---|---|---|---|
CG | 10.6 | 26.3 | 27.4 | 26.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.; Kong, X.; Li, S.; Wang, H.; Liu, D.; Gao, S.; Geng, Y.; Chen, J.; Chen, X. Impact of Low-Activity Coal Gangue on the Mechanical Properties and Microstructure Evolution of Cement-Based Materials. Buildings 2025, 15, 3073. https://doi.org/10.3390/buildings15173073
Sui S, Kong X, Li S, Wang H, Liu D, Gao S, Geng Y, Chen J, Chen X. Impact of Low-Activity Coal Gangue on the Mechanical Properties and Microstructure Evolution of Cement-Based Materials. Buildings. 2025; 15(17):3073. https://doi.org/10.3390/buildings15173073
Chicago/Turabian StyleSui, Shiyu, Xianggang Kong, Shaochun Li, Hui Wang, Di Liu, Song Gao, Yongjuan Geng, Jie Chen, and Xu Chen. 2025. "Impact of Low-Activity Coal Gangue on the Mechanical Properties and Microstructure Evolution of Cement-Based Materials" Buildings 15, no. 17: 3073. https://doi.org/10.3390/buildings15173073
APA StyleSui, S., Kong, X., Li, S., Wang, H., Liu, D., Gao, S., Geng, Y., Chen, J., & Chen, X. (2025). Impact of Low-Activity Coal Gangue on the Mechanical Properties and Microstructure Evolution of Cement-Based Materials. Buildings, 15(17), 3073. https://doi.org/10.3390/buildings15173073