Comparison of Various Methods for Determining Dynamic Behavior of Voided Floor Slabs †
Abstract
1. Introduction
2. Voided Biaxial Slabs—Overview of Technology
History of the Technology
3. Dynamic Behavior of Floor Slabs
- Human activities, such as walking and jumping.
- Continuous operation of machinery with moving parts—including air conditioning, washing machines, and presses.
- External sources of excitation, like wind, traffic, construction sites, and other nearby activities.
- The direction of vibration (although this paper focuses on vibrations in the vertical direction);
- The posture of the affected person (lying, sitting, standing);
- The current activity of the affected person;
- A person’s health and age.
- Equivalent beam method;
- Concrete society method;
- Static deflection method;
- Modified deflection method;
- Approximation by Hearmon;
- Approximation by Blevins.
3.1. Case Study—Calculating and Measuring Dynamic Behaviors of Biaxial Voided Slabs
- Field measurement of the elastic modulus of concrete;
- Preparation of FE models based on design drawings provided and measurements of material properties;
- Preparation of field measurements of dynamic behavior based on FE analysis results;
- Field measurements;
- Data processing and interpretation, with the comparison of results.
3.2. Calculation of the Dynamic Parameters of Biaxial Voided Slabs
3.3. Field Measurement
3.4. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kröhnert, H.; Itten, R.; Stucki, M. Comparing flexible and conventional monolithic building design: Life cycle environmental impact and potential for material circulation. Build. Environ. 2022, 222, 109409. [Google Scholar] [CrossRef]
- European Commission. Stepping up Europe’s 2030 climate ambition. In Investing in a Climate-Neutral Future for the Benefit of Our People; Taylor & Francis: Brussels, Belgium, 2020. [Google Scholar]
- Chuai, X.; Lu, Q.; Huang, X.; Gao, R.; Zhao, R. China’s construction industry-linked economy-resources-environment flow in international trade. J. Clean. Prod. 2021, 278, 123990. [Google Scholar] [CrossRef]
- Hussein, L.F.; Al-Taai, A.A.S.; Khudhur, I.D. Sustainability Achieved by Using Voided Slab System. AIP Conf. Proc. 2020, 2213, 020071. [Google Scholar]
- Schnellenbach-Held, M.; Pfeffer, K. Punching behavior of biaxial hollow slabs. Cem. Concr. Compos. 2002, 24, 551–556. [Google Scholar] [CrossRef]
- Pawar, A.J.; Mathew, N.S.; Dhake, P.D.; Patil, Y.D. Flexural behavior of Two-Way voided slab. Mater. Today Proc. 2022, 65, 1534–1545. [Google Scholar] [CrossRef]
- Jendželovský, N.; Vráblová, K. Analysis of natural frequencies of voided biaxial concrete slabs. Key Eng. Mater. 2017, 738, 15–24. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Yang, C.; Zhang, G.; Pan, Y. Experimental investigation and evaluation of shear performance of hollow slab beams strengthened by cavity grouting method. Case Stud. Constr. Mater. 2024, 20, e03184. [Google Scholar] [CrossRef]
- Al-Gasham, T.S.; Mhalhal, J.M.; Jabir, H.A. Improving punching behavior of interior voided slab-column connections using steel sheets. Eng. Struct. 2019, 199, 109614. [Google Scholar] [CrossRef]
- Valivonis, J.; Skuturna, T.; Daugevičius, M.; Šneideris, A. Punching shear strength of reinforced concrete slabs with plastic void formers. Constr. Build. Mater. 2017, 145, 518–527. [Google Scholar] [CrossRef]
- Sagadevan, R.; Rao, B. Experimental and analytical investigation of punching shear capacity of biaxial voided slabs. Structures 2019, 20, 340–352. [Google Scholar] [CrossRef]
- Chung, J.H.; Choi, H.K.; Lee, S.C.; Choi, C.S. Shear capacity of biaxial hollow slab with donut type hollow sphere. Procedia Eng. 2011, 14, 2219–2222. [Google Scholar] [CrossRef]
- Oukaili, N.; Merie, H. Reduced area approach for predicting punching shear resistance of biaxial hollow slabs with openings. Results Eng. 2023, 19, 101261. [Google Scholar] [CrossRef]
- Oukaili, N.; Merie, H.; Allawi, A.; Wardeh, G. Reduced Volume Approach to Evaluate Biaxial Bubbled Slabs’ Resistance to Punching Shear. Buildings 2024, 14, 676. [Google Scholar] [CrossRef]
- Pawar, A.J.; Patil, Y.D.; Vesmawala, G.R.; Dhake, P.D.; Nikam, J.S. Two-way flexural behavior of biaxial voided slab using cuboidal shape of void formers. Structures 2024, 62, 106175. [Google Scholar] [CrossRef]
- Pawar, A.J.; Patil, Y.D.; Vesmawala, G.R.; Dhake, P.D.; Nikam, J.S. Investigating the flexural behaviour of biaxial voided slab with varying size and spacing of cuboidal shaped void formers with innovative type of fixing reinforcement. Structures 2024, 64, 106616. [Google Scholar] [CrossRef]
- Staszak, N.; Garbowski, T.; Ksit, B. Optimal Design of Bubble Deck Concrete Slabs: Sensitivity Analysis and Numerical Homogenization. Materials 2023, 16, 2320. [Google Scholar] [CrossRef]
- Chung, J.-H.; Jung, H.-S.; Choi, H.-K. Flexural Strength and Stiffness of Donut-Type Voided Slab. Appl. Sci. 2022, 12, 5782. [Google Scholar] [CrossRef]
- Wolski, L. Natural Frequency of Cobiax® Flat Slabs. Master’s Thesis, Coventry University, Coventry, UK, September 2006. [Google Scholar]
- Kormanikova, E.; Kotrasova, K.; Melcer, J.; Valaskova, V. Numerical Investigation of the Dynamic Responses of Fibre-Reinforced Polymer Composite Bridge Beam Subjected to Moving Vehicle. Polymers 2022, 14, 812. [Google Scholar] [CrossRef]
- Kormaníková, E.; Kotrasová, K.; Harabinová, S.; Panulinová, E. Frequency Analysis of Composite Sandwich Panel with CFRP Faces. AIP Conf. Proc. 2022, 2425, 040006. [Google Scholar] [CrossRef]
- Kormaníková, E.; Kotrasová, K. Dynamic Behavior of Composite Sandwich Panel with CFRP Outer Layers. WSEAS Trans. Appl. Theor. Mech. 2022, 17, 263–269. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, S.; Zhang, X. Vibration Performance of Composite Doubly Curved Shells Embedded With Damping Layer. Int. J. Struct. Stab. Dyn. 2025, 2025, 2650265. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H. Active Control for Construction Stability of Suspension Arch Rib Segments Based on ARID System. Int. J. Struct. Stab. Dyn. 2024. online ready. [Google Scholar] [CrossRef]
- Mark, R.; Hutchinson, P. On the Structure of the Roman Pantheon. Art Bull. 1986, 68, 24. [Google Scholar] [CrossRef]
- Lancaster, L.C. Concrete Vaulted Construction in Imperial Rome; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- MacDonald, W.L.; Bishop, J.J. The Pantheon: Design, Meaning, and Progeny; Harvard University Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Mota, M. Voided Slabs—Then and Now; American Concrete Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Smutek, M. Vyľahčované dutinové železobetónové stropné dosky. ASB, 22 October 2010. [Google Scholar]
- Passcier-Vermeer, W. Vibrations in Dwellings: Exposure and Annoyance; Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieu: Den Haag, The Netherlands, 1995.
- European Commission. Generalisation of Criteria for Floor Vibrations for Industrial, Office, Residential and Public Buildings, and Gymnastic Halls; Publications Office of the European Union: Luxembourg, 2006. [Google Scholar]
- Thompson, R.A. Wright State University Neuroscience Building. 2017. Available online: https://www.cobiaxusa.com/wright-state-university (accessed on 24 March 2023).
- Jänich, R. Die näherungsweise Berechnung von rechteckigen Platten bei verschiedenen Randbedingungen. Bautechnik 1962, 3, 93–99. [Google Scholar]
- Bachmann, H.; Ammann, W. Vibrations in Structures Induced by Man and Machines, 3rd ed.; IABSE-AIPC-IVBH: Zürich, Switzerland, 1987. [Google Scholar]
- Králik, J. Modelovanie Konštrukcií v Metóde Konečných Prvkov Systém; A.N.S.Y.S.: Bratislava, Slovakia, 2009. [Google Scholar]
- Biasioli, F.; Mancini, G.; Just, M.; Curbach, M.; Walraven, J.; Gmeiner, S.; Robert, F. Eurocode 2: Background and Applications: Design of Concrete Buildings; Worked examples; Publications Office of the European Union: Luxembourg, 2014.
- EN 1992-1-1 (2004); Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Graybeal, B.; Davis, M. Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fi-ber-Reinforced Concrete. ACI Mater. J. 2008, 105, 603–609. [Google Scholar]
- Cobiax Deutschland GmbH. A Deep-Dive into Cobiax Technology and Execution in Detail; Cobiax Deutschland GmbH: Bielefeld, Germany, 2022. [Google Scholar]
- Cobiax Deutschland GmbH. Engineering Manual; Cobiax Deutschland GmbH: Bielefeld, Germany, 2010. [Google Scholar]
- ANSYS Inc. ANSYS Mechanical APDL Element Referenc; ANSYS Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- National Instruments Corporation. NI-9234 Specifications; National Instruments Corporation: Austin, TX, USA, 2023. [Google Scholar]
- Venglár, M. Dynamic Tests for System Identification of Bridges. Ph.D. Thesis, Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia, 2018. [Google Scholar]
- Brincker, R.; Ventura, C. Introduction to Operational Modal Analysis; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- Pastor, M.; Binda, M.; Harčarik, T. Modal Assurance Criterion. Procedia Eng. 2012, 48, 543–548. [Google Scholar] [CrossRef]
- Venglar, M.; Sokol, M.; Aroch, R. System Identification of a Truss Beam. In Proceedings of the 22nd International Conference, Engineering Mechanics 2016, Svratka, Czech Republic, 9–12 May 2016; pp. 574–577. [Google Scholar]
- Venglár, M.; Lamperová, K. Effect of the Temperature on the Modal Properties of a Steel Railroad Bridge. Slovak J. Civ. Eng. 2021, 29, 1–8. [Google Scholar] [CrossRef]
- Sokol, M.; Venglár, M.; Lamperová, K.; Márföldi, M. Performance Assessment of a Renovated Precast Concrete Bridge Using Static and Dynamic Tests. Appl. Sci. 2020, 10, 5904. [Google Scholar] [CrossRef]
Boundary Condition | K1 | K2 | K3 | N0 |
---|---|---|---|---|
0.25 | 0.50 | 0.25 | 0.25 | |
12.00 | 8.00 | 12.00 | 2.25 | |
0.1667 | 0.0760 | 0 | 0.1667 | |
Free edge Hinged edge Clamped edge |
Boundary Condition | φ—Factor |
---|---|
Hinged edge Clamped edge |
Step | Action | Parameters |
---|---|---|
1 | Low-pass filter | Type: Chebyshew Cutoff frequency: 409.6 Hz |
2 | Resampling | Target frequency: 1024 Hz |
3 | High-pass filter | Type: Butterworth Cutoff frequency: 1 Hz |
4 | Fast Fourier Transform (FFT) | Window type: Hanning Length: 30,163 samples |
Method | 2nd Eigenfrequency [Hz] | 4th Eigenfrequency [Hz] |
---|---|---|
Measurement | 9.31 | 13.47 |
2D FE model | 9.29 | 13.50 |
3D FE model | 9.41 | 13.432 |
Equivalent Plate Method | 6.75 | - |
Jänich’s approximation [33] | 6.97 | - |
Bachmann’s method [34] | 10.09 | 14.46 |
2nd Eigenfrequency | Measurement | 4th Eigenfrequency | Measurement |
---|---|---|---|
Measurement | - | Measurement | - |
2D FE model | 99.79% | 2D FE model | 99.78% |
3D FE model | 98.94% | 3D FE model | 99.70% |
Equivalent Plate Method | 62.11% | Equivalent Plate Method | - |
Jänich’s approximation [33] | 66.44% | Jänich’s approximation [33] | - |
Bachmann’s method [34] | 91.61% | Bachmann’s method [34] | 92.62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beutelhauser, D.; Venglar, M.; Jendzelovsky, N. Comparison of Various Methods for Determining Dynamic Behavior of Voided Floor Slabs. Buildings 2025, 15, 2950. https://doi.org/10.3390/buildings15162950
Beutelhauser D, Venglar M, Jendzelovsky N. Comparison of Various Methods for Determining Dynamic Behavior of Voided Floor Slabs. Buildings. 2025; 15(16):2950. https://doi.org/10.3390/buildings15162950
Chicago/Turabian StyleBeutelhauser, Daniel, Michal Venglar, and Norbert Jendzelovsky. 2025. "Comparison of Various Methods for Determining Dynamic Behavior of Voided Floor Slabs" Buildings 15, no. 16: 2950. https://doi.org/10.3390/buildings15162950
APA StyleBeutelhauser, D., Venglar, M., & Jendzelovsky, N. (2025). Comparison of Various Methods for Determining Dynamic Behavior of Voided Floor Slabs. Buildings, 15(16), 2950. https://doi.org/10.3390/buildings15162950