Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System
Abstract
1. Introduction
- (1)
- Analysis and optimization research on the influence of energy storage capacity configuration parameters of the ASHP coupled with the TES system on system performance.
- (2)
- Optimization research on ASHP coupling energy storage control strategy.
2. Model Establishment
2.1. System Model
2.2. Model Validation
3. Methodology
3.1. Evaluation Indicators
3.2. PSO-LSTM Load Prediction Model
3.3. System Operation Strategy Optimization Method
4. Results and Discussion
4.1. Capacity Configuration Parameter Analysis
4.1.1. Schemes of Capacity Configuration Parameter
4.1.2. Impact Analysis of Configuration Parameters
- (1)
- For system economy, the volume of the PCM has the greatest impact on it. Changing the volume of the PCM by ±5%, the economy increases by 2.12% or decreases by 1.89%, followed by the volume of the water tank, then the temperature of the heat source during heat storage period, and finally the phase change temperature.
- (2)
- For system energy saving, the volume of the water tank has the greatest impact on the system energy saving. Changing the volume of the water tank by ±5%, the energy saving increases by 4.03% or decreases by 3.32%, followed by the temperature of the heat source, then the volume of the PCM tank, and the phase change temperature.
- (3)
- For system flexibility, the volume of the water tank has the greatest impact on flexibility. Changing the volume of the water tank by ±5%, flexibility increases by 2.78% or decreases by 4.69%, followed by the volume of the PCM, then the temperature of the heat source, and finally the phase change temperature.
Optimization Variable | Rangeability | Economy | Energy Saving | Flexibility |
---|---|---|---|---|
Water tank volume | −5% | −0.678% | −3.321% | −4.699% |
+5% | 1.329% | 4.038% | 2.780% | |
PCM volume | −5% | −1.890% | 0.322% | −1.422% |
+5% | 2.115% | 0.223% | 1.242% | |
Phase change temperature | −5% | 0.024% | 0.146% | 0.141% |
+5% | 0.055% | 0.088% | −0.064% | |
Heat source temperature | −5% | −0.663% | −2.256% | −1.082% |
+5% | 0.857% | 2.835% | 1.187% |
4.2. Control Strategy Results
4.2.1. Control Strategy Optimization
4.2.2. Energy Consumption Analysis
4.2.3. Economic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
aele | Annual CO2 emission factor of electricity, kg·(kW·h)−1 |
Atank | Area of the tank surface, m2 |
c | Specific heat capacity, kJ·(kg·°C)−1 |
C | Annual cost value, CNY |
COP | Coefficient of performance |
E | Energy, kW |
EC | Electricity cost, CNY |
Ei | Annual CO2 emissions, kg |
fsignal | Control signal of variable frequency water pump |
F | Flexibility indicator |
i | discount rate |
IC | Initial investment cost, CNY |
k | Heat loss coefficient |
LH | Latent heat, kJ·kg−1 |
m | Mass flow rate, kg·s−1 |
M | Mass, kg |
n | Useful life, year |
OC | Operation cost, CNY |
PRI | Electricity price, CNY·(kW·h)−1 |
Q | Heat capacity, kW |
T | Temperature, °C |
V | Volume, m3 |
W | Electricity consumption, kW·h |
x | Proportion |
Greek symbol | Description |
ε | Effectiveness of the heat exchanger |
ρ | Density, kg·m−3 |
τ | Defrosting time, s |
Abbreviation | Description |
ASHP | Air source heat pump |
COP | Coefficient of performance |
HVAC | Heating, Ventilation, and Air Conditioning |
LSTM | Long short-term memory |
PCM | Phase change material |
PID | Proportion integration differentiation control |
PSO | Particle swarm optimization |
SAT | Sodium acetate trihydrate |
SCOP | Seasonal coefficient of performance |
TES | Thermal energy storage |
VAV | Variable air volume (system) |
Subscripts | Description |
air | Air |
f | Full load |
h | Heating |
hp | Air source heat pump |
in | Inlet |
m | Melting process |
PCM | Phase change material |
pre | Predicted |
pu | Pump |
r | Rated |
s | Solid |
wt | Water tank |
w | Water |
x | Node |
References
- Wang, Y.; Jiang, L.; Shen, B.; Liu, J. Research on air source phase change energy storage cascade heat pump heating system. Acta Energiae Solaris Sin. 2021, 42, 14–18. [Google Scholar]
- Xu, Z.W.; Li, H.; Xu, W.; Shao, S.Q.; Wang, Z.C.; Gou, X.X.; Zhao, M.Y.; Li, J.D. Investigation on the efficiency degradation characterization of low ambient temperature air source heat pump under partial load operation. Int. J. Refrig. 2022, 133, 99–110. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Ma, Q.; Li, B.X.; Fan, X.M.; Fu, Z.B. Application of an air source heat pump (ASHP) for heating in Harbin, the coldest provincial capital of China. Energy Build. 2017, 138, 96–103. [Google Scholar] [CrossRef]
- Liang, S.M.; Wang, H.; Bai, X.X.; Wang, G.; Gao, X.F.; Tian, X.H. A field study on the impacts of cold island effect on operating performances of air source heat pump array for space heating. J. Build. Eng. 2024, 82, 108266. [Google Scholar] [CrossRef]
- Song, M.J.; Deng, S.M.; Dang, C.B.; Mao, N.; Wang, Z.H. Review on improvement for air source heat pump units during frosting and defrosting. Appl. Energy 2018, 211, 1150–1170. [Google Scholar] [CrossRef]
- Ma, L.X.; Sun, Y.J.; Wang, F.H.; Wang, M.; Zhang, S.; Wang, Z.H. Advancements in anti-frosting and defrosting techniques for air source heat pumps: A comprehensive review of recent progress. Appl. Energy 2025, 377, 124358. [Google Scholar] [CrossRef]
- Meng, Q.L.; Ren, X.X.; Wang, W.Q.; Xiong, C.Y.; Li, Y.; Xi, Y.; Yang, L. Reduction in on-off operations of an air source heat pump with active thermal storage and demand response: An experimental case study. J. Energy Storage 2021, 36, 102401. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z.C.; Li, X.F.; Deng, G.F.; Xu, Z.W.; Li, H.; Yang, Y.X.; Zhan, B.F.; Zhao, M.Y. Influence of the water tank size and air source heat pump size on the energy saving potential of the energy storage heating system. J. Energy Storage 2022, 55, 105542. [Google Scholar] [CrossRef]
- Li, Y.T.; Huang, G.S.; Wu, H.J.; Xu, T. Feasibility study of a PCM storage tank integrated heating system for outdoor swimming pools during the winter season. Appl. Therm. Eng. 2018, 134, 490–500. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Z.C.; Li, X.F.; Xu, Z.W.; Yang, Y.X.; Yang, Q. Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications. Build. Environ. 2020, 180, 107029. [Google Scholar] [CrossRef]
- Li, X.T.; Sun, Y.Y.; Wang, W.; Wei, W.Z. Enhancing demand response and heating performance of air source heat pump through optimal water temperature scheduling: Method and application. Energy Build. 2024, 323, 114839. [Google Scholar] [CrossRef]
- Zou, D.Q.; Ma, X.F.; Liu, X.S.; Zheng, P.J.; Cai, B.M.; Huang, J.F.; Guo, J.R.; Liu, M. Experimental research of an air-source heat pump water heater using water-PCM for heat storage. Appl. Energy 2017, 206, 784–792. [Google Scholar] [CrossRef]
- Qu, S.L.; Ma, F.; Ji, R.; Wang, D.X.; Yang, L.X. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage. Energy Build. 2015, 105, 294–301. [Google Scholar] [CrossRef]
- Kapsalis, V.; Karamanis, D. Solar thermal energy storage and heat pumps with phase change materials. Appl. Therm. Eng. 2016, 99, 1212–1224. [Google Scholar] [CrossRef]
- Pardiñas, A.A.; Alonso, M.J.; Diz, R.; Kvalsvik, K.H.; Fernández-Seara, J. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps. Energy Build. 2017, 140, 28–41. [Google Scholar] [CrossRef]
- D’Ettorre, F.; De Rosa, M.; Conti, P.; Testi, D.; Finn, D. Mapping the energy flexibility potential of single buildings equipped with optimally-controlled heat pump, gas boilers and thermal storage. Sust. Cities Soc. 2019, 50, 101689. [Google Scholar] [CrossRef]
- Wang, F.; Liu, M.W.; Guo, W.L.; Liu, X.F.; Zhang, J.; Li, J.C.; Hu, G.Y.; Yin, J. Photovoltaic/thermal integrated air source heat pump hot water system with phase change tank. Renew. Energy 2025, 240, 122204. [Google Scholar] [CrossRef]
- Langner, F.; Kovacevic, J.; Zwickel, P.; Dengiz, T.; Frahm, M.; Waczowicz, S.; Çakmak, H.K.; Matthes, J.; Hagenmeyer, V. Coordinated price-based control of modulating heat pumps for practical demand response and peak shaving in building clusters. Energy Build. 2024, 324, 114940. [Google Scholar] [CrossRef]
- Zhang, D.; Qu, B.Y.; Wang, C.L. Energy-saving evaluation and control optimization of an ASHP heating system based on indoor thermal comfort. Sol. Energy 2019, 194, 913–922. [Google Scholar]
- Jin, X.; Zheng, S.Q.; Huang, G.S.; Lai, A.C.K. Energy and economic performance of the heat pump integrated with latent heat thermal energy storage for peak demand shifting. Appl. Therm. Eng. 2023, 218, 119337. [Google Scholar] [CrossRef]
- Heinz, A.; Rieberer, R. Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system. Appl. Energy 2021, 293, 116953. [Google Scholar] [CrossRef]
- Meng, Q.L.; Li, Y.; Ren, X.X.; Xiong, C.Y.; Wang, W.Q.; You, J.W. A demand-response method to balance electric power-grids via HVAC systems using active energy-storage: Simulation and on-site experiment. Energy Rep. 2021, 7, 762–777. [Google Scholar] [CrossRef]
- Jiang, D.H.; Cui, H.S.; Jiang, K.D.; Yang, J.L. Study building heat storage operation strategy for air-to-water heat pumps connected to a residential floor heating system. In Proceedings of the 3rd International Conference on Energy Engineering and Environmental Protection (EEEP), Sanya, China, 19–21 November 2018. [Google Scholar]
- Zheng, Y.X.; Xu, T.T. Effects of the different water tank location on the performance of CO2 heat pump with thermal energy storage for space heating. J. Mech. Sci. Technol. 2024, 38, 3185–3195. [Google Scholar] [CrossRef]
- Wang, Y.B.; Quan, Z.H.; Jing, H.R.; Wang, L.C.; Zhao, Y.H. Performance and operation strategy optimization of a new dual-source building energy supply system with heat pumps and energy storage. Energy Conv. Manag. 2021, 239, 114204. [Google Scholar] [CrossRef]
- Feng, G.H.; Li, A.N.; Chang, S.S.; Huang, K.L.; Zhang, L. Design and Matching Mode of Heat Pump Valley Electric Storage Heating System. J. Shenyang Jianzhu Univ. Nat. Sci. 2022, 38, 714–722. [Google Scholar]
- Ma, L.X.; Wang, F.H.; Wang, Z.H.; Zhang, S.; Liu, Z.X.; Lou, Y.C. Experimental investigation on an air source heat pump system with coupled liquid-storage gas-liquid separator regarding heating and defrosting performance. Int. J. Refrig. 2022, 134, 176–188. [Google Scholar] [CrossRef]
- Ma, L.X.; Wang, F.H.; Wang, Z.Y.; Wang, Z.H.; Zhang, S.; Sun, Y.J. Thermodynamic mechanism of high energy performance of air source heat pump with coupled liquid-storage to gas-liquid separator. Sol. Energy 2023, 255, 497–506. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley-Interscience: New York, NY, USA, 2013. [Google Scholar]
- Wang, Z.Y.; Wang, F.H.; Bai, M.M.; Zhang, S.; Xie, Z.T.; Han, B.C.; Li, Y.Z.; Liu, J.; Cai, W.L.; Zhang, Y.X.; et al. Multi-faceted performance analysis and optimization of a hybrid deep borehole heat exchanger heating system with latent heat thermal energy storage. Energy Conv. Manag. 2024, 315, 118732. [Google Scholar] [CrossRef]
- Qu, M.L.; Yan, X.F.; Wang, H.Y.; Hei, Y.X.; Liu, H.Z.; Li, Z. Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater. Renew. Energy 2022, 194, 1084–1097. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Luo, X.; Hu, X. Comparison and optimal design of multi-source complementary heating system based on air source heat pump in alpine canyon area of western Sichuan. Acta Energiae Solaris Sin. 2021, 42, 478–486. [Google Scholar]
- Hara, N.; Taniguchi, S.; Yamaki, T.; Nguyen, T.T.; Kataoka, S. Impacts of hydrogen price and carbon dioxide emission factor on bi-objective optimizations of absorption and subsequent methanation processes of carbon dioxide capture, utilization, and storage. J. Clean. Prod. 2024, 456, 142358. [Google Scholar] [CrossRef]
- Finck, C.; Li, R.L.; Kramer, R.; Zeiler, W. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems. Appl. Energy 2018, 209, 409–425. [Google Scholar] [CrossRef]
- Bai, D.; Ma, S.; Yang, X.; Ma, D.; Ma, X.; Ma, H. A recommendation model for optimizing transfer learning hyper-parameter settings in building heat load prediction with limited data samples. Energy Build. 2024, 325, 115021. [Google Scholar] [CrossRef]
- Available online: https://xadrc.xa.gov.cn/xwzx/tzgg/5fd0539df8fd1c59665181be.html (accessed on 19 May 2025).
- Xing, W.; Zhang, X.; Zhang, C.; Jia, X.; Meng, J.; Shi, Q.; Yao, S.; Huang, J. Study on the effect of additives on the heat storage properties of the phase change material sodium acetate trihydrate. Therm. Sci. Eng. Prog. 2025, 59, 103296. [Google Scholar] [CrossRef]
Period | Time | Price (CNY/kW·h) | Mode | Activated Devices |
---|---|---|---|---|
Peak period | 8:00–11:30, 18:30–23:00 | 0.8179 | Heat release | Valves 1 to 4, both pumps |
Flat period | 7:00–8:00, 11:30–18:30 | 0.5607 | Heat storage and heat release | Valves 0 and 2 to 4, both pumps |
Valley period | 23:00–7:00 | 0.2983 | Heat storage | Valves 0, 2, and 3, pump A |
Instrument | Unit | Range | Precision |
---|---|---|---|
Temperature sensor | °C | 0~100 | ±0.5 °C or 0.5% |
Calorimeter | L·h−1 | 1000~20,000 | 1% |
Electric energy meter | kW·h | NAN | 1% |
Devices | Parameters |
---|---|
ASHP unit | Rated heating capacity: 9 kW Rated COP: 3.3867 a (obtained by empirical formula [25]) Scroll compressor |
Water tank b | 2.5 m(L) 2.0 m(W) 1.2 m(H), Volume: 6 m3, Average heat loss coefficient: 0.55 W/(m2·K) [8] |
Water pump A | Rated power: 1.5 kW, Head: 20 m Rated flow: 11.3 m3/h |
Water pump B | Rated power: 0.75 kW, Head: 20 m Rated flow: 6 m3/h |
PCM tank | PCM: Hydrated inorganic salt-Sodium acetate trihydrate (SAT), Initial phase change temperature: 47 °C Heat storage capacity (30–60 °C): 97 kW·h |
Parameter | Value |
---|---|
Population size | 50 |
C1 | 1.5 |
Learning rate | Determined by algorithmic optimization |
Iterations | 200 |
C2 | 1.5 |
Number of hidden layer neurons | Determined by algorithmic optimization |
Load Grade | Proportion | Typical Day |
---|---|---|
0–20% | 3.30% | 23 November |
20–40% | 16.24% | 11 March |
40–60% | 26.51% | 16 December |
60–80% | 41.19% | 15 February |
80–100% | 12.70% | 14 January |
Item | Energy Storage Duration | Heat Storage Temperature | Temperature After Heat Releasing | ASHP Timing Setting Temperature During 12:00~18:00 |
---|---|---|---|---|
Initial value | 7 | 45 | 35 | 45 |
Maximum value | 7 | 50 | 40 | 50 |
Minimum value | 0 | 40 | 30 | 40 |
Step size | 0.2 | 0.5 | 0.5 | 0.5 |
Scheme | Optimization Weight | Water Tank Volume (m3) | PCM Volume (m3) | Phase Change Temperature (°C) | Heat Source Temperature (°C) | System Cost (CNY) | Carbon Emission (kg) | Flexibility |
---|---|---|---|---|---|---|---|---|
Initial scheme | None | 0.25 | 0.35 | 47.0 | 55.0 | 5725 | 1763.3 | 0.714 |
Scheme 1 | Minimum system cost | 0.40 | 0.14 | 42.7 | 50.0 | 4921 | 1686.8 | 0.808 |
Scheme 2 | Minimum carbon emission | 0.21 | 0.51 | 41.5 | 50.0 | 5463 | 1245.1 | 0.755 |
Scheme 3 | Maximum flexibility | 0.91 | 0.57 | 44.9 | 51.4 | 6108 | 1830.2 | 0.942 |
Scheme 4 | Relative optimal scheme | 0.52 | 0.25 | 45.9 | 50.5 | 5090 | 1527.5 | 0.921 |
Load Level | Storage Duration (h) | Heat Storage Temperature (°C) | End Temperature of Heat Release (°C) | Set Temperature of ASHP (°C) | |||||
---|---|---|---|---|---|---|---|---|---|
12:00 | 13:00 | 14:00 | 15:00 | 17:00 | 18:00 | ||||
20% | 2.50 | 44.5 | 35.0 | 45.5 | 40.3 | 41.0 | 40.0 | 40.3 | 40.1 |
40% | 2.78 | 46.0 | 33.0 | 47.0 | 44.0 | 40.1 | 40.0 | 40.0 | 40.5 |
60% | 3.00 | 47.5 | 35.0 | 47.0 | 44.0 | 44.0 | 44.5 | 40.0 | 40.5 |
80% | 3.80 | 48.0 | 34.5 | 48.0 | 42.0 | 45.0 | 43.5 | 40.0 | 40.0 |
100% | 4.00 | 50.0 | 33.5 | 48.0 | 42.5 | 44.5 | 44.5 | 43.0 | 43.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, W.; Li, F.; Du, S.; Yao, G.; Zhang, P.; Xu, K.; Wang, Z. Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System. Buildings 2025, 15, 2870. https://doi.org/10.3390/buildings15162870
Liu X, Chen W, Li F, Du S, Yao G, Zhang P, Xu K, Wang Z. Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System. Buildings. 2025; 15(16):2870. https://doi.org/10.3390/buildings15162870
Chicago/Turabian StyleLiu, Xuan, Wei Chen, Feng Li, Saisai Du, Ge Yao, Pengfei Zhang, Kaiwen Xu, and Zhihua Wang. 2025. "Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System" Buildings 15, no. 16: 2870. https://doi.org/10.3390/buildings15162870
APA StyleLiu, X., Chen, W., Li, F., Du, S., Yao, G., Zhang, P., Xu, K., & Wang, Z. (2025). Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System. Buildings, 15(16), 2870. https://doi.org/10.3390/buildings15162870