Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review
Abstract
1. Introduction
1.1. The Evolution of the Concept
1.2. Digital Twins in the AEC Industry
1.3. The Research Questions, Aim, and Rationale
- -
- What gaps exist in the current research regarding the economic impacts of Digital Twin(ning) in the AEC sector?
- -
- Where do the critical unknowns lie that could unlock greater value for different stakeholder groups through the use of Digital Twins?
- -
- In what ways should the economic knowledgebase be advanced to offer robust, evidence-based guidance for decision-making around the implementation of Digital Twins?
1.4. The Study Outline
1.5. Review Significance
2. Review Methodology
2.1. Keyword Search
2.2. Review Period
2.3. Research Paper Selection Process
3. Initial Investment and Implementation Costs
3.1. High Upfront Investment and Cost Components
3.2. Cost-Effective Strategies and Emerging Alternatives
3.3. Integration with Existing Buildings and Infrastructure Assets
3.4. Human Resource and Organisational Readiness Costs
3.5. Long-Term Economic Viability
4. Operational and Maintenance Costs of Digital Twins in Building Management
4.1. Blockchain and Data Management Costs
4.2. Production and Accessibility
4.3. Maintenance, Monitoring, and Data Updating Cost
4.4. Software, Hardware, and Cybersecurity Costs
4.5. AI Integration and Predictive Maintenance
5. The Cost–Benefit Analysis and the Return on Investment of Digital Twins in the Built Environment
5.1. Cost Efficiency and Lifecycle Optimisation
5.2. Cost Implications Across Sectors
5.3. Demonstrated Cost Benefits
5.4. Technology Integration and Cost Reduction
5.5. Challenges and Strategic Considerations
5.6. Economic Value and ROI
6. Industry-Specific Cost Drivers
6.1. Sector-Specific Adoption Challenges
6.2. Regulations and Compliance Costs
6.3. Standardisation and Interoperability Expenses
6.4. Scalability and Expansion Costs
7. Funding, Partnerships, and Financial Models
7.1. Funding
7.2. Partnerships
7.3. Financial Models
8. Barriers to Adoption and Cost Constraints
8.1. Resistance to Technological Change
8.2. High Initial Capital Expenditure (CapEx)
8.3. Integration/Interoperability Challenges with Incumbent/Legacy Systems
8.4. High Operational Expenditure and Maintenance Costs
8.5. Skill Gaps and Workforce Training Costs
8.6. Urban Space Digital Twin Challenges
9. Lifecycle Financial Impacts of Digital Twinning in the AEC Industry
9.1. Construction and Operational Cost Optimisation
9.2. Lifecycle Costing and Long-Term Financial Planning
9.3. Barriers to Cost Realisation
10. Cost Savings of Utilising the Digital Twin Technology
11. Conclusions
12. Study Limitations and Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- IBM. What Is a Digital Twin? 2021. Available online: https://www.ibm.com/think/topics/what-is-a-digital-twin (accessed on 18 April 2025).
- Dong, J.; Schwartz, Y.; Mavrogianni, A.; Korolija, I.; Mumovic, D. A review of approaches and applications in building stock energy and indoor environment modelling. Build. Serv. Eng. Res. Technol. 2023, 44, 333–354. [Google Scholar] [CrossRef]
- Sanderse, B.; Weippl, E. Digital Twins-Introduction to the Special Theme; ERCIM EEIG: Sophia Antipolis, France, 2018. [Google Scholar]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. Cirp J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- NBS. The NBS National BIM Report 2020; NBS: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Abanda, F.; Jian, N.; Adukpo, S.; Tuhaise, V.; Manjia, M. Digital twin for product versus project lifecycles’ development in manufacturing and construction industries. J. Intell. Manuf. 2024, 36, 801–831. [Google Scholar] [CrossRef]
- Albalkhy, W.; Karmaoui, D.; Ducoulombier, L.; Lafhaj, Z.; Linner, T. Digital twins in the built environment: Definition, applications, and challenges. Autom. Constr. 2024, 162, 105368. [Google Scholar] [CrossRef]
- Aldabbas, L.J. Challenges of Digital Twin Technologies Integration in Modular Construction: A Case from a Manufacturer’s Perspective. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 163–167. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Hassanali, A.; Elmousalami, H.H.; Elyamany, A.; Goudamohamed, A. Assessment framework for Bim-digital twin readiness in the construction industry. Buildings 2024, 14, 268. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Salvalai, G.; Previtali, M. Digital twin and cloud Bim-XR platform development: From scan-to-Bim-to-DT process to a 4D multi-user live app to improve building comfort, efficiency and costs. Energies 2022, 15, 4497. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Imran, A.; Cardenas-Cartagena, J.; Svennevig, P.R.; Svidt, K.; Nielsen, H.K. A review of the Digital Twin technology in the Aec-FM industry. Adv. Civ. Eng. 2022, 2022, 2185170. [Google Scholar] [CrossRef]
- Seaton, H.; Savian, C.; Sepasgozar, S.; Sawhney, A. Digital Twins from Design to Handover of Constructed Assets; Royal Institute of Chartered Surveyors: London, UK, 2022. [Google Scholar]
- Tuhaise, V.V.; Tah, J.H.M.; Abanda, F.H. Technologies for digital twin applications in construction. Autom. Constr. 2023, 152, 104931. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The Prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Building Smart. Enabling an Ecosystem of Digital Twins; Building Smart International: Hertfordshire, UK, 2020. [Google Scholar]
- Drobnyi, V.; Li, S.; Brilakis, I. Digitization of Existing Buildings with Arbitrary Shaped Spaces from Point Clouds. J. Comput. Civil. Eng. 2024, 38, 04024027. [Google Scholar] [CrossRef]
- Adan, A.; López-Rey, A.; Ramón, A. Robot for thermal monitoring of buildings. Autom. Constr. 2023, 154, 105009. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Anumba, C.J.; Ogunseiju, O.O. Towards next generation cyber-physical systems and digital twins for construction. J. Inf. Technol. Constr. 2021, 26, 505–525. [Google Scholar] [CrossRef]
- Arisekola, K.; Madson, K. Digital twins for asset management: Social network analysis-based review. Autom. Constr. 2023, 150, 104833. [Google Scholar] [CrossRef]
- Asif, M.; Naeem, G.; Khalid, M. Digitalization for sustainable buildings: Technologies, applications, potential, and challenges. J. Clean. Prod. 2024, 450, 141814. [Google Scholar] [CrossRef]
- Barkokebas, B.; Al-Hussein, M.; Hamzeh, F. Assessment of digital twins to reassign multiskilled workers in offsite construction based on lean thinking. J. Constr. Eng. Manag. 2023, 149, 04022143. [Google Scholar] [CrossRef]
- Tan, Y.-K.; Ni, Y.-Q.; Zhang, S.-X.; Zhang, Q.-L.; Wang, Y.-W. A fast, information-interactive, and reservoir computing-based digital twin for high-rise building operation. Expert. Syst. Appl. 2025, 269, 126390. [Google Scholar] [CrossRef]
- Wang, M.; Ashour, M.; Mahdiyar, A.; Sabri, S. Opportunities and Threats of Adopting Digital Twin in Construction Projects: A Review. Buildings 2024, 14, 2349. [Google Scholar] [CrossRef]
- Wu, C.; Yu, X.; Ma, C.; Zhong, R.; Zhou, X. Integrating geospatial data and street-view imagery to reconstruct large-scale 3D urban building models. Trans. GIS 2024, 28, 1326–1352. [Google Scholar] [CrossRef]
- Parida, L.; Moharana, S. Current status and future challenges of digital twins for structural health monitoring in civil infrastructures. Eng. Res. Express 2024, 6, 022102. [Google Scholar] [CrossRef]
- Seth, C.; Bawa, A.; Gotfredsen, K. Digital versus conventional prosthetic workflow for dental students providing implant-supported single crowns: A randomized crossover study. J. Prosthet. Dent. 2024, 131, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.; Stjepandić, J.; Stobrawa, S. Incremental update of a digital twin of a production system by using scan and object recognition. Transdisciplinary Engineering for Resilience: Responding to System Disruptions. IOS Press 2021, 16, 83–92. [Google Scholar]
- Quek, H.Y.; Sielker, F.; Akroyd, J.; Bhave, A.N.; Vonrichthofen, A.; Herthogs, P.; Vanderlaagyamu, C.; Wan, L.; Nochta, T.; Burgess, G. The conundrum in smart city governance: Interoperability and compatibility in an ever-growing ecosystem of digital twins. Data Policy 2023, 5, e6. [Google Scholar] [CrossRef]
- Khoo, K.T.J.; Wang, J.; Esa, M.; Sun, H. Factors Affecting the Implementation of the Digital Twins in the Construction Industry: An Interpretive Structural Modelling Analysis. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 53, 263–282. [Google Scholar] [CrossRef]
- Jemal, K.M.; Kabzhassarova, M.; Shaimkhanov, R.; Dikhanbayeva, D.; Turkyilmaz, A.; Durdyev, S.; Karaca, F. Facilitating Circular Economy Strategies Using Digital Construction Tools: Framework Development. Sustainability 2023, 15, 877. [Google Scholar] [CrossRef]
- Junjia, Y.; Alias, A.H.; Haron, N.A.; Abubakar, N. A Bibliometrics-Based Systematic Review of Safety Risk Assessment for Ibs Hoisting Construction. Buildings 2023, 13, 1853. [Google Scholar] [CrossRef]
- Davletshina, D.; Reja, V.K.; Brilakis, I. Automating construction of road digital twin geometry using context and location aware segmentation. Autom. Constr. 2024, 168, 105795. [Google Scholar] [CrossRef]
- Kayhan, B.M.; Yeni, F.B.; Ozcelik, G.; AyyıLDıZ, E. A fuzzy optimization-oriented decision support model to examine key industry 4.0 strategies for building resilience against disruptions in a healthcare supply chain. Ann. Oper. Res. 2024, 1–42. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-A. Lifespan Prediction Technique for Digital Twin-Based Noise Barrier Tunnels. Sustainability 2020, 12, 2940. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, P.; Shou, W.; Sadick, A.-M. Digital Twin-driven approach to improving energy efficiency of indoor lighting based on computer vision and dynamic Bim. Energy Build. 2022, 270, 112271. [Google Scholar] [CrossRef]
- Wang, J.; Hao, Y.; Hu, L.; Fortino, G.; Alqahtani, S.A.; Chen, M. Urban sensing of virtual internet of things for metaverse. IEEE Sens. J. 2024, 24, 5675–5686. [Google Scholar] [CrossRef]
- Shuhaimi, A.M.; Yusof, L.M.; Rahman, R.A. Drivers, Capabilities, and Challenges for Adopting Digital Twin in Facility Management: A Profound Qualitative Investigation. Plan. Malays. 2024, 22, 589–606. [Google Scholar] [CrossRef]
- Khan, M.; Khan, N.; Skibniewski, M.J.; Park, C. Environmental Particulate Matter (PM) Exposure Assessment of Construction Activities Using Low-Cost PM Sensor and Latin Hypercubic Technique. Sustainability 2021, 13, 7797. [Google Scholar] [CrossRef]
- Harshit; Chaurasia, P.; Zlatanova, S.; Jain, K. Low-Cost Data, High-Quality Models: A Semi-Automated Approach to Lod3 Creation. ISPRS Int. J. Geo-Inf. 2024, 13, 119. [Google Scholar] [CrossRef]
- Gu, D.; Yue, Q.; Li, L.; Sun, C.; Lu, X. Vision-Based Digital Shadowing to Reveal Hidden Structural Dynamics of a Real Supertall Building. Engineering 2024, 43, 146–158. [Google Scholar] [CrossRef]
- He, T.; Chen, K.; Jazizadeh, F.; Reichard, G. Unmanned aerial vehicle-based as-built surveys of buildings. Autom. Constr. 2024, 161, 105323. [Google Scholar] [CrossRef]
- Klein, L.; Li, N.; Becerik-Gerber, B. Imaged-based verification of as-built documentation of operational buildings. Autom. Constr. 2012, 21, 161–171. [Google Scholar] [CrossRef]
- Ehab, A.; Mahdi, M.A.; EL-Helloty, A. Bim Maintenance System with IoT Integration: Enhancing Building Performance and Facility Management. Civil. Eng. J. 2024, 10, 1953–1973. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K.; Luo, H. Underpass clearance checking in highway widening projects using digital twins. Autom. Constr. 2022, 141, 104406. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, W.; Luo, H. Digital twin enabled sustainable urban road planning. Sustain. Cities Soc. 2022, 78, 103645. [Google Scholar] [CrossRef]
- Yang, J.; Ng, S.T. Prospects for digital twin technology in the building modular construction and operation phases: A game theory-based analysis. J. Clean. Prod. 2024, 470, 143344. [Google Scholar] [CrossRef]
- Oviedohernandez, G.; Godinhoariolli, D.M.; Enriquezpaez, P.S.; Chiantore, P.V. Trends and innovations in photovoltaic operations and maintenance. Prog. Energy 2022, 4, 042002. [Google Scholar] [CrossRef]
- Hofmeister, M.; Lee, K.F.; Tsai, Y.-K.; Müller, M.; Nagarajan, K.; Mosbach, S.; Akroyd, J.; Kraft, M. Dynamic control of district heating networks with integrated emission modelling: A dynamic knowledge graph approach. Energy AI 2024, 17, 100376. [Google Scholar] [CrossRef]
- Keskin, B.; Salman, B.; Koseoglu, O. Architecting a Bim-Based Digital Twin Platform for Airport Asset Management: A Model-Based System Engineering with SysML Approach. J. Constr. Eng. Manag. 2022, 148. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Improving building occupant comfort through a digital twin approach: A Bayesian network model and predictive maintenance method. Energy Build. 2023, 288, 112992. [Google Scholar] [CrossRef]
- Megahed, N.A.; Hassan, A.M. Evolution of Bim to DTs: A paradigm shift for the post-pandemic Aeco industry. Urban Sci. 2022, 6, 67. [Google Scholar] [CrossRef]
- Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital Twin for Civil Engineering Systems: An Exploratory Review for Distributed Sensing Updating. Sensors 2022, 22, 3168. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Sturgill, R.; Nassereddine, H.; Ramadan, B.; Li, Y. Current Benefits of Asce 75 and its Potential to Affect Digital As-Built Initiatives at State Departments of Transportation. Transp. Res. Rec. 2024, 2678, 846–854. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Alnmr, A.N.; Svennevig, P.R.; Svidt, K. A review of the Digital Twin technology for fault detection in buildings. Front. Built Environ. 2022, 8, 1013196. [Google Scholar] [CrossRef]
- Methuselah, J.M.J. Digital twin technology for smart manufacturing. J. Technol. Syst. 2024, 6, 52–65. [Google Scholar] [CrossRef]
- Greif, T.; Stein, N.; Flath, C.M. Peeking into the void: Digital twins for construction site logistics. Comput. Ind. 2020, 121, 103264. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Motie, M.; Hall, D.M. Digital building twins and blockchain for performance-based (smart) contracts. Autom. Constr. 2022, 133, 103981. [Google Scholar] [CrossRef]
- Nourel-Din, M.; Poçasmartins, J.; Ramos, N.M.M.; Pereira, P.F. The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings. Energies 2024, 17, 3392. [Google Scholar] [CrossRef]
- Figueiredo, K.; Hammad, A.w.a.; Pierott, R.; Tam, V.W.Y.; Haddad, A. Integrating Digital Twin and Blockchain for dynamic building Life Cycle Sustainability Assessment. J. Build. Eng. 2024, 97, 111018. [Google Scholar] [CrossRef]
- Figueiredo, K.; Hammad, A.W.A.; Haddad, A.; Tam, V.W.Y. Assessing the usability of blockchain for sustainability: Extending key themes to the construction industry. J. Clean. Prod. 2022, 343, 131047. [Google Scholar] [CrossRef]
- Cruzfranco, P.A.; Ruedamárquezdelaplata, A.; Pérezsendín, M. Investigating a Workflow for Obtaining Physical Models from Digital Twins Obtained through Photogrammetry and Tls: New Ways for a Sustainable Dissemination of Heritage. Appl. Sci. 2023, 13, 1057. [Google Scholar] [CrossRef]
- Piroozfar, P.; Farr, E.R.; Essa, A.; Boseley, S.; Jin, R. Augmented Reality (AR) and Virtual Reality (VR) in construction industry: An experiential development workflow. In Proceedings of the Tenth International Conference on Construction in the 21st Century (Citc-10), Colombo, Sri Lanka, 2–4 July 2018. [Google Scholar]
- Quirk, D.; Lanni, J.; Chauhan, N. Digital twins: Answering the hard questions. Ashrae J. 2020, 62, 22–25. [Google Scholar]
- Yu, Z.; Du, P.; Yi, L.; Luo, W.; Li, D.; Zhao, B.; Li, L.; Zhang, Z.; Zhang, J.; Zhang, J. Coastal Zone Information Model: A comprehensive architecture for coastal digital twin by integrating data, models, and knowledge. Fundam. Res. 2024, in press. [Google Scholar] [CrossRef]
- Raitviir, C.-R.; Lill, I. Conceptual Framework of Information Flow Synchronization throughout the Building Lifecycle. Buildings 2024, 14, 2207. [Google Scholar] [CrossRef]
- Siccardi, S.; Villa, V. Trends in adopting Bim, IoT and DT for facility management: A scientometric analysis and keyword co-occurrence network review. Buildings 2022, 13, 15. [Google Scholar] [CrossRef]
- Sresakoolchai, J.; Kaewunruen, S. Track geometry prediction using three-dimensional recurrent neural network-based models cross-functionally co-simulated with Bim. Sensors 2022, 23, 391. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.G.; Hamdoon, B.; Balobaid, A.B.; Abdelwahed, N.; Alameemi, M.M.; Alaryani, R.N. Trihybrid Method for Energy Efficiency Retrofitting of Public Housing in a Hot Arid Climate: A Case Study in the UAE. J. Archit. Eng. 2025, 31. [Google Scholar] [CrossRef]
- Alhadi, A.; Tom, B.D.; Yacine, R. Enhancing asset management: Integrating digital twins for continuous permitting and compliance-A systematic literature review. J. Build. Eng. 2024, 99, 111515. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Vousdoukas, M.; Hynes, W.; Carluccio, S.; Keou, O. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 2022, 35, 100387. [Google Scholar] [CrossRef]
- Xu, L.; Wang, L. Research on Information Modeling Technology of Assembly Building for Future Trends. Appl. Math. Nonlinear Sci. 2024, 9, 20242509. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of digital twin across industries: A review. Appl. Sci. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Andritsou, D.; Alexiou, C.; Potsiou, C. Bim, 3D Cadastral Data and AI for Weather Conditions Simulation and Energy Consumption Monitoring. Land 2024, 13, 880. [Google Scholar] [CrossRef]
- Almatared, M.; Liu, H.; Abudayyeh, O.; Hakim, O.; Sulaiman, M. Digital-twin-based fire safety management framework for smart buildings. Buildings 2023, 14, 4. [Google Scholar] [CrossRef]
- Borkowski, A.S. Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management. J. Sens. Actuator Netw. 2024, 13, 19. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Yu, C.; Zhong, R.Y. Digital twin-enabled visibility and traceability for building materials in on-site fit-out construction. Autom. Constr. 2024, 166, 105640. [Google Scholar] [CrossRef]
- Eljazzar, M.; Piskernik, M.; Nassereddine, H. Digital twin in construction: An empirical analysis. In Proceedings of the EG-ICE 2020 Workshop on Intelligent Computing in Engineering, Berlin, Germany, 1–4 July 2020; pp. 501–510. [Google Scholar]
- Kim, S.; Irizarry, J. Exploratory study of user-perceived effectiveness of unmanned aircraft system (UAS) integration in visual inspections of transportation agency. Innov. Infrastruct. Solut. 2020, 5, 110. [Google Scholar] [CrossRef]
- Hu, W.; Lim, K.Y.H.; Cai, Y. Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings 2022, 12, 2004. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Zeng, W. Development and application of digital twin technology for integrated regional energy systems in smart cities. Sustain. Comput. Inform. Syst. 2022, 36, 100781. [Google Scholar] [CrossRef]
- Salih, F.; EL-Adaway, I.H. Quantifying the impact of technology utilization on schedule and cost performance in construction projects. J. Constr. Eng. Manag. 2024, 150, 04024078. [Google Scholar] [CrossRef]
- Salem, T.; Dragomir, M. Digital twins for construction projects—Developing a risk systematization approach to facilitate anomaly detection in smart buildings. Telecom 2023, 4, 135–145. [Google Scholar] [CrossRef]
- Banyai, K.; Kovacs, L. Identification of influence of digital twin technologies on production systems: A return on investment-based approach. East.-Eur. J. Enterp. Technol. 2023, 124, 66–78. [Google Scholar] [CrossRef]
- Meng, X.; Das, S.; Meng, J. Integration of digital twin and circular economy in the construction industry. Sustainability 2023, 15, 13186. [Google Scholar] [CrossRef]
- Sacks, R.; Girolami, M.; Brilakis, I. Building information modelling, artificial intelligence and construction tech. Dev. Built Environ. 2020, 4, 100011. [Google Scholar] [CrossRef]
- Engel, J.; Schmitt, T.; Rodemann, T.; Adamy, J. Hierarchical Mpc for building energy management: Incorporating data-driven error compensation and mitigating information asymmetry. Appl. Energy 2024, 372, 123780. [Google Scholar] [CrossRef]
- Gadzhimusieva, D.; Gorelova, A.; Beigbeder, S.M.; Lledó, G.L. Enhancing accessibility in academic buildings: A discrete event simulation approach for robotic assistance. IEEE Access 2024, 12, 126885–126898. [Google Scholar] [CrossRef]
- Gagliardi, F. Integration of independent NDA techniques within a SLAM-based robotic system for improving safeguards standard routines: A review of the current status possible future developments. ESARDA Bull.-Int. J. Nucl. Safeguards Non-Prolif. 2022, 64, 10–20. [Google Scholar]
- Xiao, J.; Ma, S.; Wang, S.; Huang, G.Q. Fine-grained digital twin sharing framework for smart construction through an incentive mechanism. Int. J. Prod. Econ. 2024, 276, 109382. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Hu, M.; Wang, Y.K. Prediction of highway tunnel pavement performance based on digital twin and multiple time series stacking. Adv. Civil. Eng. 2020, 2020, 8824135. [Google Scholar] [CrossRef]
- Adade, D.; De Vries, W.T. Digital twin for active stakeholder participation in land-use planning. Land 2023, 12, 538. [Google Scholar] [CrossRef]
- Banihashemi, S.; Meskin, S.; Sheikhkhoshkar, M.; Mohandes, S.R.; Hajirasouli, A.; Lenguyen, K. Circular economy in construction: The digital transformation perspective. Clean. Eng. Technol. 2024, 18, 100715. [Google Scholar] [CrossRef]
- Çetin, S.; Dewolf, C.; Bocken, N. Circular digital built environment: An emerging framework. Sustainability 2021, 13, 6348. [Google Scholar] [CrossRef]
- Lai, X.; He, X.; Wang, S.; Wang, X.; Sun, W.; Song, X. Building a Lightweight Digital Twin of a Crane Boom for Structural Safety Monitoring Based on a Multifidelity Surrogate Model. J. Mech. Des. 2022, 144, 064502. [Google Scholar] [CrossRef]
- Boje, C.; Menacho, Á.J.H.; Marvuglia, A.; Benetto, E.; Kubicki, S.; Schaubroeck, T.; Gutiérrez, T.N. A framework using Bim and digital twins in facilitating Lcsa for buildings. J. Build. Eng. 2023, 76, 107232. [Google Scholar] [CrossRef]
- Rafsanjani, H.N.; Nabizadeh, A.H. Towards digital architecture, engineering, and construction (Aec) industry through virtual design and construction (Vdc) and digital twin. Energy Built Environ. 2023, 4, 169–178. [Google Scholar] [CrossRef]
- Bass, B.; New, J.; Copeland, W. Potential energy, demand, emissions, and cost savings distributions for buildings in a utility’s service area. Energies 2020, 14, 132. [Google Scholar] [CrossRef]
- Liu, H.; Han, S.; Zhu, Z. Blockchain Technology toward Smart Construction: Review and Future Directions. J. Constr. Eng. Manag. 2023, 149, 03123002. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Kang, K.; Wang, Z.; Zhong, R.Y.; Huang, G.Q. Blockchain-enabled cyber-physical smart modular integrated construction. Comput. Ind. 2021, 133, 103553. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Guo, D.; Wu, W.; Zhong, R.Y.; Huang, G.Q. Digital twin-enabled smart modular integrated construction system for on-site assembly. Comput. Ind. 2022, 136, 103594. [Google Scholar] [CrossRef]
- Grübel, J.; Thrash, T.; Aguilar, L.; Gath-Morad, M.; Hélal, D.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. Dense Indoor Sensor Networks: Towards passively sensing human presence with LoRawan. Pervasive Mob. Comput. 2022, 84, 101640. [Google Scholar] [CrossRef]
- Esmaeili, I.; Simeone, D. A General Contractor’s Perspective on Construction Digital Twin: Implementation, Impacts and Challenges. Buildings 2023, 13, 978. [Google Scholar] [CrossRef]
- Sayed, A.N.; Bensaali, F.; Himeur, Y.; Dimitrakopoulos, G.; Varlamis, I. Enhancing building sustainability: A Digital Twin approach to energy efficiency and occupancy monitoring. Energy Build. 2025, 328, 115151. [Google Scholar] [CrossRef]
- Saretta, E.; Bonomo, P.; Maeder, W.; Nguyen, V.K.; Frontini, F. Digitalization as a driver for supporting PV deployment and cost reduction. EPJ Photovolt. 2022, 13, 1. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, S. Digital twin model and its establishment method for steel structure construction processes. Buildings 2024, 14, 1043. [Google Scholar] [CrossRef]
- Calvetti, D.; Mêda, P.; Hjelseth, E.; Desousa, H. Incremental digital twin framework: A design science research approach for practical deployment. Autom. Constr. 2025, 170, 105954. [Google Scholar] [CrossRef]
- Chi, Z.; Liu, Z.; Wang, F.; Osmani, M. Driving circular economy through digital technologies: Current research status and future directions. Sustainability 2023, 15, 16608. [Google Scholar] [CrossRef]
- Chen, G.; Alomari, I.; Taffese, W.Z.; Shi, Z.; Afsharmovahed, M.H.; Mondal, T.G.; Nguyen, S. Multifunctional Models in Digital and Physical Twinning of the Built Environment—A University Campus Case Study. Smart Cities 2024, 7, 836–858. [Google Scholar] [CrossRef]
- Massafra, A.; Costantino, C.; Predari, G.; Gulli, R. Building information modeling and building performance simulation-based decision support systems for improved built heritage operation. Sustainability 2023, 15, 11240. [Google Scholar] [CrossRef]
- Matthys, M.; Decock, L.; Mertens, L.; Boussauw, K.; Demaeyer, P.; Vandeweghe, N. Rethinking the public space design process using extended reality as a game changer for 3D co-design. Appl. Sci. 2023, 13, 8392. [Google Scholar] [CrossRef]
- Campoy-Nieves, A.; Manjavacas, A.; Jiménez-Raboso, J.; Molina-Solana, M.; Gómez-Romero, J. Sinergym–A virtual testbed for building energy optimization with Reinforcement Learning. Energy Build. 2025, 327, 115075. [Google Scholar] [CrossRef]
- Bellavista, P.; Dimodica, G. IoTwins: Implementing distributed and hybrid digital twins in industrial manufacturing and facility management settings. Future Internet 2024, 16, 65. [Google Scholar] [CrossRef]
- Nie, X.; Daud, W.S.A.W.M.; Pu, J. A novel transactive integration system for solar renewable energy into smart homes and landscape design: A digital twin simulation case study. Sol. Energy 2023, 262, 111871. [Google Scholar] [CrossRef]
- O’dwyer, E.; Pan, I.; Charlesworth, R.; Butler, S.; Shah, N. Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustain. Cities Soc. 2020, 62, 102412. [Google Scholar] [CrossRef]
- Love, P.E.; Matthews, J. The ‘how’ of benefits management for digital technology: From engineering to asset management. Autom. Constr. 2019, 107, 102930. [Google Scholar] [CrossRef]
- Xu, H.; Shao, Y.; Chen, J.; Wang, C.; Berres, A. Semi-automatic geographic information system framework for creating photo-realistic digital twin cities to support autonomous driving research. Transp. Res. Rec. 2024, 2678, 1068–1084. [Google Scholar] [CrossRef]
- Hadavi, A.; Alizadehsalehi, S. From Bim to metaverse for Aec industry. Autom. Constr. 2024, 160, 105248. [Google Scholar] [CrossRef]
- Lynch, K.M.; Issa, R.R.; Anumba, C.J. Financial digital twin for public sector capital projects. J. Comput. Civil. Eng. 2023, 37, 04023003. [Google Scholar] [CrossRef]
- Avanthey, L.; Beaudoin, L. Dense In Situ Underwater 3D Reconstruction by Aggregation of Successive Partial Local Clouds. Remote Sens. 2024, 16, 4737. [Google Scholar] [CrossRef]
- Vieira, J.; Almeida, N.M.D.; Poçasmartins, J.; Patrício, H.; Morgado, J.G. Analysing the Value of Digital Twinning Opportunities in Infrastructure Asset Management. Infrastructures 2024, 9, 158. [Google Scholar] [CrossRef]
- Moshood, T.D.; Rotimi, J.O.; Shahzad, W.; Bamgbade, J. Infrastructure digital twin technology: A new paradigm for future construction industry. Technol. Soc. 2024, 77, 102519. [Google Scholar] [CrossRef]
- Bellavista, P.; Bicocchi, N.; Fogli, M.; Giannelli, C.; Mamei, M.; Picone, M. Requirements and design patterns for adaptive, autonomous, and context-aware digital twins in industry 4.0 digital factories. Comput. Ind. 2023, 149, 103918. [Google Scholar] [CrossRef]
- Cheng, A.L. The Intelligent Built-Environment as Cyber-Physical System. Arch. Built Environ. 2024, 13, 1–278. [Google Scholar] [CrossRef]
- Biagini, C.; Bongini, A.; Marzi, L. From BIM to Digital Twin. IoT Data Integration in Asset Management Platform. J. Inf. Technol. Constr. 2024, 29, 1103–1127. [Google Scholar]
- Rematas, K.; Liu, A.; Srinivasan, P.P.; Barron, J.T.; Tagliasacchi, A.; Funkhouser, T.; Ferrari, V. Urban radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12932–12942. [Google Scholar] [CrossRef]
- Okonta, E.D.; Vukovic, V.; Hayat, E. prospective directions in the computer systems industry foundation classes (Ifc) for shaping data exchange in the sustainability and resilience of cities. Electronics 2024, 13, 2297. [Google Scholar] [CrossRef]
- Koo, B.; Jung, R.; Yu, Y.; Kim, I. A geometric deep learning approach for checking element-to-entity mappings in infrastructure building information models. J. Comput. Des. Eng. 2021, 8, 239–250. [Google Scholar] [CrossRef]
- Parsinejad, H.; Choi, I.; Yari, M. Production of iranian architectural assets for representation in museums: Theme of museum-based digital twin. Body Space Technol. 2021, 20, 61–74. [Google Scholar] [CrossRef]
- Diara, F.; Rinaudo, F. From reality to parametric models of cultural heritage assets for Hbim. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information. Sciences 2019, 42, 413–419. [Google Scholar] [CrossRef]
- Lydon, G.P.; Caranovic, S.; Hischier, I.; Schlueter, A. Coupled simulation of thermally active building systems to support a digital twin. Energy Build. 2019, 202, 109298. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmström, J. Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Lin, L.; Wu, S.; Kang, Y.; Sepasgozar, S. Exploring the benefits and limitations of digital twin technology in building energy. Appl. Sci. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Dossick, C.S.; Snider, M.; Andosburn, L. Operations It, construction time orientations the challenges of implementing, IOT. J. Inf. Technol. Constr. 2023, 28, 585–596. [Google Scholar] [CrossRef]
- Ibrahim, F.S.B.; Esa, M.B.; Rahman, R.A. The adoption of IoT in the Malaysian construction industry: Towards construction 4.0. Int. J. Sustain. Constr. Eng. Technol. 2021, 12, 56–67. [Google Scholar] [CrossRef]
- Lee, Y.-G. A Study on Development of an Integrated IoT Service Platform Using Spatial Information. Asia-Pac. J. Converg. Res. Interchange (APJCRI) 2020, 6, 73–80. [Google Scholar] [CrossRef]
- Pennacchia, E.; Gugliermetti, L.; Cumo, F. New millennium construction sites: An integrated methodology for the sustainability assessment. Vitruvio 2023, 8, 102–115. [Google Scholar] [CrossRef]
- Artopoulos, G.; Fokaides, P.; Lysandrou, V.; Deligiorgi, M.; Sabatakos, P.; Agapiou, A. Data-driven multi-scale study of historic urban environments by accessing earth observation and non-destructive testing information via an Hbim-supported platform. Int. J. Archit. Herit. 2024, 18, 920–939. [Google Scholar] [CrossRef]
- Shi, G.; Liu, Z.; Lu, D.; Wang, Z.; Jiao, Z.; Ji, C.; Zhang, Z. Construction error control method of large-span spatial structures based on digital twin. J. Build. Eng. 2024, 98, 111311. [Google Scholar] [CrossRef]
- Khallaf, R.; Khallaf, L.; Anumba, C.J.; Madubuike, O.C. Review of Digital Twins for Constructed Facilities. Buildings 2022, 12, 2029. [Google Scholar] [CrossRef]
- Ariyachandra, M.R.M.F.; Samarakkody, A.; Perera, B. Real-virtual synchronisation: A review on the state-of-the-art geometric digital twinning of infrastructure. In Proceedings of the 8th World Construction Symposium, Colombo, Sri Lanka, 8–10 November 2019. [Google Scholar]
- Jahangir, M.F.; Schultz, C.P.L.; Kamari, A. A review of drivers and barriers of Digital Twin adoption in building project development processes. ITcon-J. Inf. Technol. Constr. 2024, 29, 141–178. [Google Scholar] [CrossRef]
- Küsel, K. Model-Based System Engineering for Life Cycle Development of Digital Twins of Real Estate. INCOSE Int. Symp. 2020, 30, 715–730. [Google Scholar] [CrossRef]
- Ali, A.K.; Badinelli, R. Novel Integration of Sustainable and Construction Decisions into the Design Bid Build Project Delivery Method Using Bpmn. Procedia Eng. 2016, 145, 164–171. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Bohner, E.; Vehmas, T.; Laikari, A.; Okkonen, M.; Kiviniemi, M.; Lahdenperä, P.; Ferreira, M. Digitalisation of the quality control of concrete manufacturing and construction. In Proceedings of the fib Symposium 2019: Concrete—Innovations in Materials, Design and Structures, Krakow, Poland, 27–29 May 2019; pp. 1435–1442. [Google Scholar]
- Cogswell, D.; Paramatmuni, C.; Scotti, L.; Moffat, J. Guidance for Materials 4.0 to interact with a digital twin. Data-Centric Eng. 2022, 3, e21. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, W.; Chen, K.; Huang, G.G.; Anumba, C. Smart Construction Objects. J. Comput. Civil. Eng. 2016, 30, 04015070. [Google Scholar] [CrossRef]
- Kosse, S.; Vogt, O.; Wolf, M.; König, M.; Gerhard, D. Digital Twin Framework for Enabling Serial Construction. Front. Built Environ. 2022, 8, 864722. [Google Scholar] [CrossRef]
- Kuru, K. MetaOmniCity: Toward Immersive Urban Metaverse Cyberspaces Using Smart City Digital Twins. IEEE Access 2023, 11, 43844–43868. [Google Scholar] [CrossRef]
- Iqbal, F.; Ahmed, S.; Tariq, M.A.B.; Waqas, H.A.; Al-Ammar, E.A.; Wabaidur, S.M.; Fawad, M. Bim-IoT integration for remote real-time concrete compressive strength monitoring. Ain Shams Eng. J. 2024, 15, 102863. [Google Scholar] [CrossRef]
- Khan, A.U.; Huang, L.; Onstein, E.; Liu, Y. Overview of Emerging Technologies for Improving the Performance of Heavy-Duty Construction Machines. IEEE Access 2022, 10, 103315–103336. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Stylianidis, N.; Englezos, D.; Papadopoulos, P.; Eliades, D.; Timotheou, S.; Polycarpou, M.M.; Panayiotou, C. A digital twin architecture for real-time and offline high granularity analysis in smart buildings. Sustain. Cities Soc. 2023, 98, 104795. [Google Scholar] [CrossRef]
- Harode, A.; Thabet, W.; Dongre, P. A tool-based system architecture for a digital twin: A case study in a healthcare facility. ITcon-J. Inf. Technol. Constr. 2023, 28, 107–137. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. [Google Scholar] [CrossRef]
- Seo, H.; Yun, W.-S. Digital Twin-Based Assessment Framework for Energy Savings in University Classroom Lighting. Buildings 2022, 12, 544. [Google Scholar] [CrossRef]
- Spudys, P.; Afxentiou, N.; Georgali, P.-Z.; Klumbyte, E.; Jurelionis, A.; Fokaides, P. Classifying the operational energy performance of buildings with the use of digital twins. Energy Build. 2023, 290, 113106. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Environ. 2018, 4, 77. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Lin, Y.H. Digital twins for managing railway maintenance and resilience. Open Res. Eur. 2021, 1, 91. [Google Scholar] [CrossRef] [PubMed]
- Kaewunruen, S.; Abdelhadi, M.; Kongpuang, M.; Pansuk, W.; Remennikov, A.M. Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate Change Adaptation. Sensors 2023, 23, 252. [Google Scholar] [CrossRef] [PubMed]
- Nourel-Din, M.; Pereira, P.F.; Poçasmartins, J.; Ramos, N.M. Digital twins for construction assets using Bim standard specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Pang, Y.; He, T.; Liu, S.; Zhu, X.; Lee, C. Triboelectric nanogenerator-enabled digital twins in civil engineering infrastructure 4.0: A comprehensive review. Adv. Sci. 2024, 11, 2306574. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Nassereddine, H.; Dadi, G. Perspective Chapter: Roadmap to a Holistic Highway Digital Twin–A Why, How, and Why Framework. In Critical Infrastructure-Modern Approach and New Developments; IntechOpen: London, UK, 2022. [Google Scholar]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modeling (Bim): Now and beyond. Australas. J. Constr. Econ. Build. 2012, 12, 15–28. [Google Scholar]
- Broo, D.G.; Schooling, J. Digital twins in infrastructure: Definitions, current practices, challenges and strategies. Int. J. Constr. Manag. 2023, 23, 1254–1263. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Messner, J. A categorical approach for defining digital twins in the Aeco industry. ITcon-J. Inf. Technol. Constr. 2024, 29, 198–218. [Google Scholar] [CrossRef]
- Corrado, C.R.; Delong, S.M.; Holt, E.G.; Hua, E.Y.; Tolk, A. Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities. Sustainability 2022, 14, 12988. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Benedetti, A.C.; Costantino, C.; Gulli, R.; Predari, G. The process of digitalization of the urban environment for the development of sustainable and circular cities: A case study of Bologna, Italy. Sustainability 2022, 14, 13740. [Google Scholar] [CrossRef]
- Lanfermann, F.; Liu, Q.; Jin, Y.; Schmitt, S. Identification of energy management configuration concepts from a set of pareto-optimal solutions. Energy Convers. Manag. X 2024, 22, 100576. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, C.; Luo, X.; Martek, I. Critical drivers and barriers of digital twin adoption in water infrastructure: An environmental, social, governance, and financial perspective. Sustain. Dev. 2024, 33, 1623–1648. [Google Scholar] [CrossRef]
- Bartie, N.; Cobos-Becerra, Y.; Fröhling, M.; Schlatmann, R.; Reuter, M. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: Assessment and opportunities. Resour. Conserv. Recycl. 2021, 169, 105516. [Google Scholar] [CrossRef]
- Adewale, B.A.; Ene, V.O.; Ogunbayo, B.F.; Aigbavboa, C.O. A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle. Buildings 2024, 14, 2137. [Google Scholar] [CrossRef]
- Borovkov, A.; Vafaeva, K.M.; Vatin, N.; Ponyaeva, I. Synergistic Integration of Digital Twins and Neural Networks for Advancing Optimization in the Construction Industry: A Comprehensive Review. Constr. Mater. Prod. 2024, 7, 1–38. [Google Scholar] [CrossRef]
- Mohseni, S.-R.; Zeitouni, M.J.; Parvaresh, A.; Abrazeh, S.; Gheisarnejad, M.; Khooban, M.-H. Fmi real-time co-simulation-based machine deep learning control of Hvac systems in smart buildings: Digital-twins technology. Trans. Inst. Meas. Control 2023, 45, 661–673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunaratne, T.; Ajiero, I.R.; Joseph, R.; Farr, E.; Piroozfar, P. Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review. Buildings 2025, 15, 2583. https://doi.org/10.3390/buildings15142583
Karunaratne T, Ajiero IR, Joseph R, Farr E, Piroozfar P. Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review. Buildings. 2025; 15(14):2583. https://doi.org/10.3390/buildings15142583
Chicago/Turabian StyleKarunaratne, Tharindu, Ikenna Reginald Ajiero, Rotimi Joseph, Eric Farr, and Poorang Piroozfar. 2025. "Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review" Buildings 15, no. 14: 2583. https://doi.org/10.3390/buildings15142583
APA StyleKarunaratne, T., Ajiero, I. R., Joseph, R., Farr, E., & Piroozfar, P. (2025). Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review. Buildings, 15(14), 2583. https://doi.org/10.3390/buildings15142583