A GIS-Based Study on Spatial Pattern, Accessibility and Equity of Urban Cultural Resources: A Case Study of Red Culture Resources in Shanghai
Abstract
1. Introduction
1.1. Research Background and Significance
1.2. Evolution of Spatial Analytical Methods
2. Data and Methods
2.1. Data
2.1.1. Study Area and Subjects
2.1.2. Data Sources and Processing
2.2. Method
2.2.1. Average Nearest Neighbor (ANN) Analysis
2.2.2. Kernel Density (KD) Analysis
2.2.3. Accessibility Analysis
2.2.4. Location Quotient Analysis
2.2.5. Methodological Considerations
3. Result
3.1. Spatial Distribution Patterns
3.2. Accessibility Analysis
3.3. Equity Analysis
4. Discussion
4.1. Limitations and Future Directions
4.2. Discussion on Policy and Practical Recommendations
4.3. Comparison with Existing Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kourtit, K.; Nijkamp, P. Urban Cultural Vanguards Why Culture Matters for Urban Success. J. Urban Manag. 2022, 11, 198–213. [Google Scholar] [CrossRef]
- Birdsall, C.; Halauniova, A.; van de Kamp, L. Sensing Urban Values: Reassessing Urban Cultures and Histories amidst Redevelopment Agendas. Space Cult. 2021, 24, 348–358. [Google Scholar] [CrossRef]
- Zhang, J.; Luan, W.-L.; Zhang, J.-S. Optimization of Quantitative Evaluation Method for Urban Waterfront Building Cluster Skyline. Buildings 2025, 15, 9. [Google Scholar] [CrossRef]
- Senderos, M.; Sagarna, M.; Otaduy, J.P.; Mora, F. Globalization and Architecture: Urban Homogenization and Challenges for Unprotected Heritage. The Case of Postmodern Buildings with Complex Geometric Shapes in the Ensanche of San Sebastián. Buildings 2025, 15, 497. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Luo, X.; Luan, W.-L. Multi-Viewpoint Assessment of Urban Waterfront Skylines: Fractal and Spatial Hierarchy Analysis in Shanghai. Buildings 2025, 15, 1407. [Google Scholar] [CrossRef]
- Jin, Y.; He, R.; Hong, J.; Luo, D.; Xiong, G. Assessing the Accessibility and Equity of Urban Green Spaces from Supply and Demand Perspectives: A Case Study of a Mountainous City in China. Land 2023, 12, 1793. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Chen, Y.; Zhao, P. Accessibility and its spatial equity of basic education in China. Sci. Geogr. Sin. 2024, 44, 1513–1523. [Google Scholar] [CrossRef]
- Tao, Z.; Dai, T.; Song, C. Improving spatial equity-oriented location-allocation models of urban medical facilities. Acta Geogr. Sin. 2023, 78, 474–489. [Google Scholar]
- Vidanapathirana, N.; Wang, Y.; McLain, A.C.; Self, S. Cluster Detection Capabilities of the Average Nearest Neighbor Ratio and Ripley’s K Function on Areal Data: An Empirical Assessment 2022. arXiv 2022, arXiv:2204.10882. [Google Scholar]
- Thompson, A.E.; Walden, J.P.; Chase, A.S.Z.; Hutson, S.R.; Marken, D.B.; Cap, B.; Fries, E.C.; Guzman Piedrasanta, M.R.; Hare, T.S.; Horn, S.W.; et al. Ancient Lowland Maya Neighborhoods: Average Nearest Neighbor Analysis and Kernel Density Models, Environments, and Urban Scale. PLoS ONE 2022, 17, e0275916. [Google Scholar] [CrossRef]
- He, D.; Chen, Z.; Ai, S.; Zhou, J.; Lu, L.; Yang, T. The Spatial Distribution and Influencing Factors of Urban Cultural and Entertainment Facilities in Beijing. Sustainability 2021, 13, 12252. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Ruckthongsook, W.; Tiwari, C.; Oppong, J.R.; Natesan, P. Evaluation of Threshold Selection Methods for Adaptive Kernel Density Estimation in Disease Mapping. Int. J. Health Geogr. 2018, 17, 10. [Google Scholar] [CrossRef]
- Karppa, M.; Aumüller, M.; Pagh, R. DEANN: Speeding up Kernel-Density Estimation Using Approximate Nearest Neighbor Search. arXiv 2022, arXiv:2107.02736. [Google Scholar]
- Wang, J.; Liu, Y.; Chang, J. An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation. Mathematics 2022, 10, 2402. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Kwan, M.-P.; Murray, A.T.; O’Kelly, M.E.; Tiefelsdorf, M. Recent Advances in Accessibility Research: Representation, Methodology and Applications. J. Geogr. Syst. 2003, 5, 129–138. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Martens, K. Justice in Transport as Justice in Accessibility: Applying Walzer’s “spheres of Justice” to the Transport Sector. Transportation 2012, 39, 1035–1053. [Google Scholar] [CrossRef]
- Moya-Gómez, B.; Salas-Olmedo, M.H.; García-Palomares, J.C.; Gutiérrez, J. Dynamic Accessibility Using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness. Netw. Spat. Econ. 2018, 18, 273–290. [Google Scholar] [CrossRef]
- Liu, L.; Porr, A.; Miller, H.J. Realizable Accessibility: Evaluating the Reliability of Public Transit Accessibility Using High-Resolution Real-Time Data. J. Geogr. Syst. 2023, 25, 429–451. [Google Scholar] [CrossRef]
- Ma, M.; Bian, Z.; Gao, J.; Yang, H.; Chow, J.; Ozbay, K. A Multi-Dimension and High-Granularity Equity Measurement for Transportation Services through Accessibility and Reliability. arXiv 2024, arXiv:2501.14761. [Google Scholar]
- Song, J.-H.; Li, M.-N.; Cai, S.; Wang, P. The Measurement and Spatial Differentiation Pattern of Traffic Accessibility in Hainan. Sci. Geogr. Sin. 2017, 37, 1507–1516. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Deng, Q. Study on the Spatial Distribution Pattern and Highway Accessibility of Red Villages in Hunan Province. Resour. Environ. Yangtze Basin 2022, 31, 793–804. [Google Scholar]
- Chen, F.; Li, J.-F.; Ji, X.-F. The Impact of High-speed Railway on the Spatial Pattern of Regional Tourism Transport Accessibility. J. Transp. Syst. Eng. Inf. Technol. 2016, 16, 225–230+247. [Google Scholar] [CrossRef]
- Li, B.-C.; Wang, C.-H.; Li, L.; Liu, Q.; Wang, M. The Influence of High-Speed Railways on Accessibility of Tourism in the Region—A Case Study of Southern Anhui International Cultural Tourism Destination. Econ. Geogr. 2016, 36, 182–191. [Google Scholar] [CrossRef]
- Sun, Q. Study on the Spatial Relationship between Traffic Accessibility and Tourism Economic Linkage: Taking Daxi High-speed Railway as an Example. Econ. Probl. 2023, 4, 95–104. [Google Scholar] [CrossRef]
- Yang, X.-Z.; Feng, L.-X.; Zhang, K. The Impact of Transportationt on Accessibility of Tourism Scenic Region of Cross-border Tourism Region: A Case Study of Dabieshan Mountain. Sci. Geogr. Sin. 2013, 33, 693–702. [Google Scholar] [CrossRef]
- Wang, L.; Cao, X.-S.; Hu, L.-L. Research on the impact of tourist attractions accessibility on tourist flow in different travel times: A case study of Xi’an city. Hum. Geogr. 2021, 36, 157–166. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Zylka, C. Integration of BIM and GIS for the Digitization of the Built Environment. Appl. Sci. 2024, 14, 11171. [Google Scholar] [CrossRef]
- Zou, J.-Q.; Ming, Q.-Z.; Liu, A.-L.; Zheng, B.-M.; Shi, P.-F.; Luo, D.-S. Spatial distribution pattern of classic red tourism scenic spots and heterogeneity of its influencing factors in China. J. Nat. Resour. 2021, 36, 2748–2762. [Google Scholar] [CrossRef]
- Zhong, Y.-X.; Liu, Y.; Lai, G.-Y. The Study on Accessibility and Spatial Structures for Red Tourist Attractions in Jiangxi Province. J. Jiangxi Norm. Univ. (Nat. Sci.) 2011, 35, 208–212. [Google Scholar] [CrossRef]
- Zhao, X.; Lee, J.; Hong, K. A Comparative Analysis of Museum Accessibility in High-Density Asian Cities: Case Studies from Seoul and Tokyo. Buildings 2023, 13, 1886. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; Xu, Y.; Yang, S.; Jiang, Y.; Wang, S. Evaluating Spatial Accessibility of Cultural Urban Land Use by Using Improved 2SFCA Method in Xi’an, China. Heliyon 2022, 8, e11993. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S.; Xu, Y.; Zhao, Z.; Jiang, Y.; Li, X. Comparative Study of Cultural Space Characteristics: Inside Areas of Xi’an 2nd Ring Road, China, and Manhattan Borough. J. Urban Plann. Dev. 2021, 147, 04021045. [Google Scholar] [CrossRef]
- Shanghai Municipal Bureau of Statistics; Survey Office of the National Bureau of Statistics in Shanghai. Shanghai Statistical Bulletin on National Economic and Social Development, 2024; Statistical Theory and Practice; Shanghai Municipal Bureau of Statistics: Shanghai, China; Survey Office of the National Bureau of Statistics in Shanghai: Shanghai, China, 2025; pp. 43–52.
- Mei, Y.; Wang, S.; Gong, M.; Chen, J. Urban Traffic Dominance: A Dynamic Assessment Using Multi-Source Data in Shanghai. Sustainability 2024, 16, 4956. [Google Scholar] [CrossRef]
- Liu, R.-W. Red Culture: The Spiritual Pillar of the Chinese Nation. Red Flag Manuscr. 2013, 4–9, 1. [Google Scholar]
- Shanghai Municipal People’s Government. Notice of the Shanghai Municipal People’s Government on the Publication of the “List of Red Cultural Resources of Shanghai (First Batch).”; Bulletin of the Shanghai Municipal People’s Government: Shanghai, China, 2022; pp. 3–34.
- Pan, M.; Quan, H.; Ma, X.-Q. Blue Book on the Inheritance, Promotion, Protection and Utilization of Red Cultural Resources in Shanghai, 2021–2022; Shanghai Academy of Social Sciences Press: Shanghai, China, 2023. [Google Scholar]
- Shanghai Municipal Transportation Commission. Annual Changes in Shanghai’s Integrated Transportation in 2021 Under the Impact of the Pandemic. Available online: https://jtw.sh.gov.cn/xwfb2/20221228/ed0d52a414674acea0cde3e569f19add.html (accessed on 29 May 2025).
- Shanghai Municipal Transportation Commission. Reply from the Municipal Transportation Commission to the Proposal on Practicing the “Green” Concept and Building a “Cycling” City. Available online: https://jtw.sh.gov.cn/jyjabljg/20180605/0010-4819.html (accessed on 9 March 2025).
- The State Council of the People’s Republic of China. “Shanghai 2040” Plan: Enhancing People’s Sense of Well-Being. Available online: https://www.gov.cn/xinwen/2016-08/23/content_5101522.htm (accessed on 5 March 2025).
- Shanghai Municipal Bureau of Statistics; Leading Group Office of the Seventh National Population Census of Shanghai. Communiqué on Major Data of the Seventh National Population Census of Shanghai; Jiefang Daily: Shanghai, China, 2021; Volume 8.
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping Essential Urban Land Use Categories in China (EULUC-China): Preliminary Results for 2018. Sci. Bull. 2019, 65, 182–187. [Google Scholar] [CrossRef]
- Berke, O. Exploratory Disease Mapping: Kriging the Spatial Risk Function from Regional Count Data. Int. J. Health Geogr. 2004, 3, 18. [Google Scholar] [CrossRef]
- Wang, H.-B.; Yang, R.-R. Spatial distribution characteristics of toponymic landscape in Baoding. J. Arid Land Resour. Environ. 2018, 32, 99–105. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2018; ISBN 978-1-315-14091-9. [Google Scholar]
- Research Group of the Party History Research Office of the CPC Shanghai Municipal Committee; Yan, A.-Y. A Study on the Inheritance, Promotion, Protection, and Utilization of Red Resources in Shanghai. Shanghai Party Hist. Party Build. 2023, 5, 3–10. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Xu, Y.; Yan, S. A Quantitative Analysis of Inequality of Urban Cultural Space Distribution in Xi’an. Sci. China Technol. Sci. 2019, 62, 502–510. [Google Scholar] [CrossRef]
Facility Types | Z-Score | p-Value | NNI | Spatial Characteristics |
---|---|---|---|---|
Former Sites | 272.37 | 0.00 | 10.42 | Dispersion |
Ruins | 268.60 | 0.00 | 9.40 | Dispersion |
Memorial Facilities | 403.60 | 0.00 | 21.58 | Dispersion |
ALL | 478.88 | 0.00 | 11.11 | Dispersion |
District | Area Accessibility Rate (%) | Residential Accessibility Rate (%) | ||||
---|---|---|---|---|---|---|
Walking | Cycling | Driving | Walking | Cycling | Driving | |
Baoshan District | 4.37 | 31.55 | 100.00 | 7.91 | 45.09 | 99.74 |
Changning District | 30.49 | 71.52 | 96.22 | 40.74 | 91.07 | 98.35 |
Chongming District | 4.27 | 25.57 | 70.61 | 8.36 | 34.72 | 83.71 |
Fengxian District | 0.79 | 9.35 | 89.84 | 2.62 | 12.38 | 90.61 |
Hongkou District | 44.21 | 91.10 | 99.86 | 34.63 | 89.79 | 100.00 |
Huangpu District | 81.69 | 86.63 | 99.72 | 88.94 | 94.68 | 100.00 |
Jiading District | 3.71 | 35.21 | 98.74 | 5.74 | 47.06 | 100.00 |
Jing’an District | 40.17 | 72.61 | 99.68 | 31.58 | 67.18 | 99.74 |
Jinshan District | 1.86 | 16.74 | 97.26 | 7.67 | 41.38 | 97.79 |
Minhang District | 1.73 | 14.76 | 93.89 | 2.17 | 21.59 | 98.83 |
Pudong New Area | 1.81 | 20.27 | 100.00 | 2.33 | 23.68 | 99.83 |
Putuo District | 17.99 | 84.14 | 100.00 | 13.20 | 87.80 | 99.93 |
Qingpu District | 2.80 | 22.85 | 81.95 | 5.18 | 25.32 | 98.33 |
Songjiang District | 1.68 | 12.81 | 97.73 | 3.30 | 14.02 | 99.63 |
Xuhui District | 12.55 | 50.23 | 100.00 | 14.36 | 56.38 | 99.69 |
Yangpu District | 30.43 | 79.54 | 99.36 | 31.35 | 87.60 | 99.47 |
Citywide | 3.81 | 23.03 | 91.80 | 7.00 | 33.30 | 97.21 |
District | AMGwalking | AMGcycling | AMGdriving |
---|---|---|---|
Baoshan District | 3.54 | 13.54 | −0.26 |
Changning District | 10.25 | 19.55 | 2.13 |
Chongming District | 4.09 | 9.15 | 13.10 |
Fengxian District | 1.83 | 3.03 | 0.77 |
Hongkou District | −9.58 | −1.31 | 0.14 |
Huangpu District | 7.25 | 8.05 | 0.28 |
Jiading District | 2.02 | 11.84 | 1.26 |
Jing’an District | −8.58 | −5.43 | 0.05 |
Jinshan District | 5.81 | 24.64 | 0.53 |
Minhang District | 0.44 | 6.84 | 4.94 |
Pudong New Area | 0.51 | 3.42 | −0.17 |
Putuo District | −4.79 | 3.66 | −0.07 |
Qingpu District | 2.38 | 2.48 | 16.38 |
Songjiang District | 1.62 | 1.21 | 1.90 |
Xuhui District | 1.81 | 6.15 | −0.31 |
Yangpu District | 0.93 | 8.05 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-Q.; Zhang, J.; Luan, W.-L.; Luo, X. A GIS-Based Study on Spatial Pattern, Accessibility and Equity of Urban Cultural Resources: A Case Study of Red Culture Resources in Shanghai. Buildings 2025, 15, 2268. https://doi.org/10.3390/buildings15132268
Chen S-Q, Zhang J, Luan W-L, Luo X. A GIS-Based Study on Spatial Pattern, Accessibility and Equity of Urban Cultural Resources: A Case Study of Red Culture Resources in Shanghai. Buildings. 2025; 15(13):2268. https://doi.org/10.3390/buildings15132268
Chicago/Turabian StyleChen, Shu-Qing, Jian Zhang, Wen-Lei Luan, and Xi Luo. 2025. "A GIS-Based Study on Spatial Pattern, Accessibility and Equity of Urban Cultural Resources: A Case Study of Red Culture Resources in Shanghai" Buildings 15, no. 13: 2268. https://doi.org/10.3390/buildings15132268
APA StyleChen, S.-Q., Zhang, J., Luan, W.-L., & Luo, X. (2025). A GIS-Based Study on Spatial Pattern, Accessibility and Equity of Urban Cultural Resources: A Case Study of Red Culture Resources in Shanghai. Buildings, 15(13), 2268. https://doi.org/10.3390/buildings15132268