Assessment of the Physical Vulnerability of Vernacular Architecture to Meteorological Hazards Using an Indicator-Based Approach: The Case of the Kara Region in Northern Togo
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
- Step 1: Identification of the climatic hazards of the study area and their impact on buildings:
- Step 2: Identification of indicators that affect the vulnerability of buildings to climatic hazards and the collection of data for these indicators:
- Step 3: Calculation of the vulnerability of buildings through the physical vulnerability index (PVI):
- Step 4: Considering the overall vulnerability to climatic hazards for the resilience of buildings:
3.1. Step 1: Identification of the Climatic Hazards of the Study Area and Their Impact on the Buildings
3.1.1. Study Area
3.1.2. Vernacular Architecture in the Kara Region
Data Sampling and Processing
4. Analysis and Results
4.1. Analysis of Vernacular Architecture in the Kara Region
4.1.1. Kabiyè Vernacular Architecture (KVA)
- Description
- Way of living
- Materials and construction system
4.1.2. Nawdéba Vernacular Architecture (NVA)
- Description
- Way of living
- Materials and construction system
4.1.3. Evolution from Vernacular Architecture to Contemporary Architecture (CA)
4.2. Climate Hazards and Impacts on Vernacular Architecture in the Kara Region
- High heat
- Strong winds
- Heavy rains
4.3. Step 2: Identification of Indicators That Affect the Vulnerability of Buildings to Climatic Hazards and the Collection of Data Against These Indicators
4.3.1. High Heat Hazard Indicator
- Roof Material: Metal roofs, in prolonged contact with high temperatures, expand and contract, especially in the attachment areas, which are often subject to leaks and water infiltration. The temperature and humidity of the surrounding air influence the strength of the wood material. The strength of a wood component decreases when the air temperature exceeds 35 °C and its humidity level is below 10% [39].
- Length of overhang: The roof overhang provides protection against solar radiation [41]. It creates shade on the upper half of facades exposed to sunlight.
- Elevation material: Elevation walls exposed to high temperatures are subject to differential thermal expansion, leading to cracks on facades, in general, but also on concrete elements. There are cracks in the metal components contained in the walls, which are often subject to expansion. Earthen walls are often subject to hygrometric changes in line with temperature variations. Exposing cement-stabilized and compacted rammed earth samples to dry–wet cycles leads to a reduction in compressive strength [42]. It is therefore conceivable that temperature variations can also weaken destabilized raw earth walls.
- Resistance of plastering materials: Differential thermal expansion induced by high temperatures creates cracks in the plaster. In addition, the quality of the coating can reduce temperatures on surfaces. Walls with white paint are about 3 °C cooler than those with gray paints [43].
- Building shape: The shape of the building is important, and can limit the surfaces in contact with the outside. In this sense, the compact form proves to be the most effective in minimizing the surface area of the envelope exposed to the sun’s rays [44].
- Building maintenance status: Repair work on the damage to the walls and roof elements increases the building’s resistance to high temperatures.
4.3.2. Heavy Rain Hazard Indicator
- Roof material: The roof serves as the primary barrier between buildings and the weather. Leakage zones on the roof promote the infiltration of rainwater, causing damage to the interior of buildings [45]. The wood and vegetation cover are putrescible in contact with the weather. Macroscopic examination revealed various types of deterioration caused by weathering, fungal organisms and insect pests [46].
- Roof slope: A roof with a low inclination does not facilitate the drainage of rainwater. Water tends to stagnate on the roof, which increases the risk of infiltration into the roof components. Low-slope roofs are among the building components most vulnerable to heavy rainfall [47].
- Roof shape: The shape of the roof is an essential element of the building when it comes to heavy rain. Pyramid-shaped roof provides protection and safety against weather hazards.
- Length of overhang: Although they are protective for facades, they also suffer considerable damage, especially when they are not reinforced.
- Foundation height: The presence and height of the foundation are important elements to consider with regard to heavy rainfall. The good-height foundations made with embankments ensure better waterproofing of the building. Runoff water easily invades homes with low foundations.
- Foundation material: Prolonged contact with water accentuates the vulnerability of the foundation structure materials [48]. A longer immersion time leads to the degradation of the foundation materials.
- Elevation material: Unprotected earthen walls easily erode during severe weather, and are often carried away by runoff. In addition, due to the phenomenon of capillary rise, the diffusion of moisture through the walls leads to degradation of materials by mold formation and detachment of plaster [48]. Runoff water can also damage the walls of a building due to impacts from floating debris such as tree trunks. A standard masonry wall is at risk of collapsing when the difference in water level between the inside and the outside reaches or exceeds one meter [48].
- Waterproofing of intersections on the building: Points of fixation on the roof and joints at doors and windows are most often vulnerable during bad weather.
- Presence and state of gutter: The gutter, when present and functional, ensures the evacuation of water on the roof and prevents waterfalls on the facades.
- Resistance of plastering materials: The quality of the coating or plastering can reduce infiltration when heavy rainfalls occur. Solutions based on néré and cow dung, for example, improve the waterproofing of walls against moisture.
- Window type: Windows, when exposed, are subject to water infiltration during severe weather. Water intrusion from shuttered windows is reduced by 77–87% compared to unprotected windows [49].
- Building maintenance status: Regular building maintenance, including roof repairs and wall waterproofing, improves the weatherproofing of buildings.
4.3.3. Strong Wind Hazard Indicator
- Roof shape: The behavior of the roof in relation to winds varies depending on its shape. In tropical areas, the pyramidal roof undergoes small uplifts compared to the gable and the hipped roofs [45].
- Roof material: The characteristics of the roof, including material, thickness, type of fastening and arrangement, determine its resistance to strong winds.
- Roof slope: Lightweight construction with a double-pitched roof and gable wall is the most vulnerable to high winds. Hipped roofs with a slope of 25 to 40 degrees provide better resistance to strong winds [50].
- Length of overhang: Strong winds often cause the eaves of buildings to fail. Unreinforced roof overhangs on gable roofs experience extremely high local suction when exposed to strong winds [51].
- Elevation material: Wind can damage the walls of a building due to the impacts of objects that can fall or float, such as tree trunks or branches.
- Height of the building: Strong winds affect high-rise buildings more than low-rise buildings. In high-rise buildings, it is possible to observe an increase in wind pressure of up to 30% [52].
- Building shape: Aerodynamic shapes reduce the resistance forces of high winds by limiting the surfaces of contact with the outside. In this way, winds can easily go around the building without obstacles.
- Window type: Failure of the window devices (type and fixing of windows) leads to high interior pressures, causing damage to other parts of the structure, such as the roof being exposed and the framework being destroyed [53].
- Windows material: Wind-blown debris frequently damages single-pane louvered windows, aggravating the damage inside the building [54].
- Construction typology: The construction typology indicator measures the degree of use of materials to obtain the best resistance to hazards. Depending on the study area, we opt for three construction methods: the monolithic envelope, the mixed envelope (load-bearing framework plus infill) and the masonry structure plus infill.
- Building maintenance status: Regular maintenance of each part of the structure, from structural work to finishing work, improves the resistance of buildings to strong winds.
4.4. Step 3: Calculation of the Vulnerability of Buildings Through the Physical Vulnerability Index (PVI)
4.4.1. Scoring of Indicators
- Scoring of indicators for the severe rain hazard
Indicators | Scoring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Roof material | Metal roof | Reinforced concrete slab | Clay slab | Clay tile | Straw | |||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
2 | Roof shape | Conical | Pyramidal | Gable roof | Multi-slope roof | Hangar | Flat roof | ||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
3 | Roof slope | 21–30° and >30° | 11–20° | 0–10° | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
4 | Length of overhang | >50 cm | 25–50 cm | 10–25 cm | No overhang | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
5 | Foundation height | Built on piles | 45–80 cm | 30–45 cm | 10–30 cm | 0–10 cm | <0 cm | No basement | |||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
6 | Foundation material | Lateritic stone, or schist | Cement blocks and concrete | Raw mud | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
7 | Elevation material | Lateritic stone or schist | Cement Block | Earthen wall | Raw mud | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
8 | Waterproofing of intersections on the building | Good | Normal | Bad | No waterproofing of intersections | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
9 | Presence and state of gutter | Good | Normal | Bad | No gutter | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
10 | Resistance of plastering materials | Stone surface | Nere juice and cow dung | Cement plaster and paint | Plastering in earthen | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
11 | Windows type | Sliding window | Casement windows | Louvers | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
12 | Building maintenance status | Preventive maintenance | Corrective maintenance | Curative maintenance | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roof material | Roof shape | Roof slope | Length of overhang | Foundation height | Foundation material | Elevation material | Waterproofing of intersections on the building | Presence and state of gutter | Resistance of plastering materials | Windows type | Building maintenance status | ||
KVA | Scoring | Straw | Conical | 21–30° | 25–50 cm | 30–45 cm | Stone | Earthen wall | No waterproofing of intersections | No gutter | Nere juice and cow dung | Casement windows | Corrective maintenance |
Total | 0.7 | 0.2 | 0.2 | 0.4 | 0.3 | 0.1 | 0.5 | 1 | 1 | 0.3 | 0.4 | 0.5 | |
(5.6) | |||||||||||||
NVA | Scoring | Straw | Conical | >30° | 25–50 cm | 45–80 cm | Stone | Stone wall | No waterproofing of intersections | No gutter | Stone surface | Casement windows | Corrective maintenance |
Total | 0.7 | 0.2 | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 | 1 | 1 | 0.1 | 0.4 | 0.5 | |
(4.9) | |||||||||||||
CA | Scoring | Metal roof | Gable roof | 11–20° | 25–50 cm | 45–80 cm | Cement blocks and concrete | Cement Block | No waterproofing of intersections | Bad | Cement plaster and paint | Casement windows | Curative maintenance |
Total | 0.2 | 0.5 | 0.6 | 0.4 | 0.2 | 0.4 | 0.4 | 1 | 0.8 | 0.6 | 0.4 | 0.9 | |
(6.4) |
- Rating of indicators for the high heat hazard
Indicators | Scoring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Roof material | Metal roof | Reinforced concrete slab | Clay slab | Clay tile | Straw | |||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
2 | Length of overhang | >50 cm | 25–50 cm | 10–25 cm | No overhang | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
3 | Elevation material | Lateritic stone or schist | Cement Block | Earthen wall | Raw mud | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
4 | Resistance of plastering materials | Stone surface | Nere juice and cow dung | Cement plaster and paint | Plastering in earthen | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
5 | Building shape | Round hut | Rectangular hut | ||||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
6 | Building maintenance status | Preventive maintenance | Corrective maintenance | Curative maintenance | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
1 | 2 | 3 | 4 | 5 | 6 | ||
---|---|---|---|---|---|---|---|
Roof material | Length of overhang | Elevation material | Resistance of plastering materials | Building shape | Building maintenance status | ||
KVA | Scoring | Straw | 25–50 cm | Earthen wall | Nere juice and cow dung | Round hut | Corrective maintenance |
Total | 0.7 | 0.4 | 0.5 | 0.3 | 0.2 | 0.5 | |
(2.6) | |||||||
NVA | Scoring | Straw | 25–50 cm | Stone wall | Stone surface | Round hut | Corrective maintenance |
Total | 0.7 | 0.4 | 0.1 | 0.1 | 0.2 | 0.5 | |
(2.0) | |||||||
CA | Scoring | Metal roof | 25–50 cm | Cement Block | Cement plaster and paint | Rectangular hut | Curative maintenance |
Total | 0.2 | 0.4 | 0.4 | 0.6 | 0.7 | 0.9 | |
(3.2) |
- Scoring of indicators for high wind hazard
Indicators | Scoring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Roof material | Metal roof | Reinforced concrete slab | Clay slab | Clay tile | Straw | |||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
2 | Roof shape | Conical | Pyramidal | Gable roof | Multi-slope roof | Hangar | Flat roof | ||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
3 | Roof slope | 21–30° and >30° | 11–20° | 0–10° | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
4 | Length of overhang | >50 cm | 25–50 cm | 10–25 cm | No overhang | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
5 | Elevation material | Lateritic stone or schist | Cement Block | Earthen wall | Raw mud | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
6 | Windows type | Sliding window | Casement windows | Louvers | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
7 | Windows material | Metal | Wood | Sheet metal | Single Glazing/Naco | ||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
8 | Building maintenance status | Preventive maintenance | Corrective maintenance | Curative maintenance | |||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
9 | Building shape | Round hut | Rectangular hut | ||||||||
Score | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
10 | Construction typology | Monolithic envelope (stone) | Concrete structure and cement block filling | Monolithic envelope (earthen) | |||||||
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
11 | Height of the building | Single story | Two-story | ||||||||
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Roof material | Roof shape | Roof slope | Length of overhang | Elevation material | Windows type | Windows material | Building maintenance status | Building shape | Construction typology | Height of the building | ||
KVA | Scoring | Straw | Conical | 21–30° | 25–50 cm | Earthen wall | Casement windows | Wood | Corrective maintenance | Round hut | Monolithic envelope (earthen) | Single story |
Total | 0.7 | 0.2 | 0.2 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 | 0.2 | 0.5 | 0.2 | |
(4.2) | ||||||||||||
NVA | Scoring | Straw | Conical | >30° | 25–50 cm | Stone wall | Casement windows | Wood | Corrective maintenance | Round hut | Monolithic envelope (stone) | Single story |
Total | 0.7 | 0.2 | 0.2 | 0.4 | 0.1 | 0.4 | 0.4 | 0.5 | 0.2 | 0.1 | 0.2 | |
(3.4) | ||||||||||||
CA | Scoring | Metal roof | Gable roof | 11–20° | 25–50 cm | Cement Block | Casement windows | Metal | Curative maintenance | Rectangular hut | Concrete structure and cement block filling | Single story |
Total | 0.2 | 0.5 | 0.6 | 0.4 | 0.4 | 0.4 | 0.3 | 0.9 | 0.7 | 0.3 | 0.2 | |
(4.9) |
4.4.2. Weighting of Indicators Through the AHP Method and Calculation of the Vulnerability Index
AHP Method and Weighting of Indicators
Vulnerability Index Calculation
Heavy Rain | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roof Material | Roof Shape | Roof Slope | Length of Overhang | Foundation Height | Foundation Material | Elevation Material | Waterproofing of Intersections | Presence and State of Gutter | Plastering Material | Windows Type | Building Maintenance Status | ||
KVA | Weight | 0.17 | 0.17 | 0.24 | 0.04 | 0.06 | 0.08 | 0.03 | 0.01 | 0.04 | 0.01 | 0.02 | 0.12 |
Score | 0.7 | 0.2 | 0.2 | 0.4 | 0.3 | 0.1 | 0.5 | 1 | 1 | 0.3 | 0.4 | 0.5 | |
Weight × Score | 0.119 | 0.034 | 0.048 | 0.016 | 0.018 | 0.008 | 0.015 | 0.01 | 0.04 | 0.003 | 0.008 | 0.06 | |
RVI | 0.379 | ||||||||||||
NVA | Weight | 0.17 | 0.17 | 0.24 | 0.04 | 0.06 | 0.08 | 0.03 | 0.01 | 0.04 | 0.01 | 0.02 | 0.12 |
Score | 0.7 | 0.2 | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 | 1 | 1 | 0.1 | 0.4 | 0.5 | |
Weight × Score | 0.119 | 0.034 | 0.048 | 0.016 | 0.012 | 0.008 | 0.003 | 0.01 | 0.04 | 0.001 | 0.008 | 0.06 | |
RVI | 0.359 | ||||||||||||
CA | Weight | 0.17 | 0.17 | 0.24 | 0.04 | 0.06 | 0.08 | 0.03 | 0.01 | 0.04 | 0.01 | 0.02 | 0.12 |
Score | 0.2 | 0.5 | 0.6 | 0.4 | 0.2 | 0.4 | 0.4 | 1 | 0.8 | 0.6 | 0.4 | 0.9 | |
Weight × Score | 0.034 | 0.085 | 0.144 | 0.016 | 0.012 | 0.032 | 0.012 | 0.01 | 0.032 | 0.006 | 0.008 | 0.108 | |
RVI | 0.499 |
- Vulnerability index of building type to the hazard of heavy rain
- Vulnerability index of building type to high heat hazards
High Heat | |||||||
---|---|---|---|---|---|---|---|
Roof Material | Length of Overhang | Elevation Material | Plastering Materials | Building Shape | Building Maintenance Status | ||
KVA | Weight | 0.25 | 0.16 | 0.04 | 0.06 | 0.38 | 0.1 |
Score | 0.7 | 0.4 | 0.5 | 0.3 | 0.2 | 0.5 | |
Weight × Score | 0.175 | 0.064 | 0.02 | 0.018 | 0.076 | 0.05 | |
RVI | 0.403 | ||||||
NVA | Weight | 0.25 | 0.16 | 0.04 | 0.06 | 0.38 | 0.1 |
Score | 0.7 | 0.4 | 0.1 | 0.1 | 0.2 | 0.5 | |
Weight × Score | 0.175 | 0.064 | 0.004 | 0.006 | 0.076 | 0.05 | |
RVI | 0.375 | ||||||
CA | Weight | 0.25 | 0.16 | 0.04 | 0.06 | 0.38 | 0.1 |
Score | 0.2 | 0.4 | 0.4 | 0.6 | 0.7 | 0.9 | |
Weight × Score | 0.05 | 0.064 | 0.016 | 0.036 | 0.266 | 0.09 | |
RVI | 0.522 |
- Building type vulnerability index to strong wind hazards
Windstorm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Roof Material | Roof Shape | Roof Slope | Length of Overhang | Elevation Material | Windows Type | Building Shape | Height of the Building | Windows Material | Construction Typology | Building Maintenance Status | ||
KVA | Weight | 0.11 | 0.22 | 0.15 | 0.22 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 | 0.07 | 0.07 |
Score | 0.7 | 0.2 | 0.2 | 0.4 | 0.5 | 0.4 | 0.2 | 0.2 | 0.4 | 0.5 | 0.5 | |
Weight × Score | 0.077 | 0.044 | 0.03 | 0.088 | 0.015 | 0.008 | 0.008 | 0.008 | 0.008 | 0.035 | 0.035 | |
RVI | 0.356 | |||||||||||
NVA | Weight | 0.11 | 0.22 | 0.15 | 0.22 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 | 0.07 | 0.07 |
Score | 0.7 | 0.2 | 0.2 | 0.4 | 0.1 | 0.4 | 0.2 | 0.2 | 0.4 | 0.1 | 0.5 | |
Weight × Score | 0.077 | 0.044 | 0.03 | 0.088 | 0.003 | 0.008 | 0.008 | 0.008 | 0.008 | 0.007 | 0.035 | |
RVI | 0.316 | |||||||||||
CA | Weight | 0.11 | 0.22 | 0.15 | 0.22 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 | 0.07 | 0.07 |
Score | 0.2 | 0.5 | 0.6 | 0.4 | 0.4 | 0.4 | 0.7 | 0.2 | 0.3 | 0.3 | 0.9 | |
Weight × Score | 0.022 | 0.11 | 0.09 | 0.088 | 0.012 | 0.008 | 0.028 | 0.008 | 0.006 | 0.021 | 0.063 | |
RVI | 0.456 |
5. Discussions
Step 4: Considering Global Vulnerability to Climatic Hazards for Building Resilience
- Vulnerability to the hazard of heavy rain
- Vulnerability to the high heat hazard
- Vulnerability to strong wind hazards
6. Significance, Limits and Future Developments of the Study
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- CRED. 2023_EMDAT_Annual Reports; CRED: Bengaluru, India, 2023; Available online: https://files.emdat.be/reports/2023_EMDAT_report.pdf (accessed on 13 October 2024).
- Le Monde. L’Été 2023 a Été le Plus Chaud Jamais Mesuré dans le Monde, Selon l’Observatoire Européen Copernicus. 2023. Available online: https://www.lemonde.fr/planete/article/2023/09/06/l-ete-2023-a-ete-le-plus-chaud-jamais-mesure-dans-le-monde-selon-l-observatoire-europeen-copernicus-l-effondrement-climatique-a-commence-affirme-le-secretaire-general-des-nations-unies_6188057_3244.html (accessed on 12 October 2024).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Contribution du Groupe de Travail I au Cinquième Rapport d’Évaluation du Groupe d’Experts Intergouvernemental sur l’Évolution du Climat. Available online: https://www.climate-chance.org/bibliotheque/5eme-rapport-devaluation-les-elements-scientifiques-resume-a-lintention-des-decideurs/ (accessed on 14 October 2024).
- Centre Climatique Régional Afrique de l’Ouest et Sahel—AGRHYMET CCR-AOS Note Spéciale sur la Situation des Inondations au Sahel, No. 1 Août 2024. 2024. Available online: https://agrhymet.cilss.int/2024/08/22/note-speciale-sur-la-situation-des-inondations-au-sahel/ (accessed on 14 October 2024).
- Republique Togolaise. Première Communication Relative à l’Adaptation aux Changements Climatiques au Togo 2023. Available online: https://unfccc.int/sites/default/files/ACR/2023-08/togo-ad-comm-fr.pdf (accessed on 15 October 2024).
- Republique Togolaise. Ministère de la Santé Plan National d’Adaptation du Secteur de la Sante aux Effets des Changements Climatiques (PNAS). 2011. Available online: https://www.giz.de/en/downloads/plan-national-dadaptation-dusecteur-de-la-sante.pdf (accessed on 16 October 2024).
- ANPC TOGO. Plan Regional de Contingence Multirisques: Region de la Kara. Available online: https://anpctogo.tg/plans/ (accessed on 30 September 2024).
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A Methodology for an Integrated Risk Assessment of Spatially Relevant Hazards. J. Environ. Plan. Manag. 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Aawi, P. Contribution à l’Étude de la Vulnérabilité de l’Agriculture dans le Nord du Togo. Le Cas de la Préfecture de la Kozah. Ph.D. Thesis, Université de Lomé (UL), Lomé, Togo, 2012. [Google Scholar]
- Bilabena, S.; Anika, E.K.; Ekoue, A.G.; Agbekodo, E.S.; Kossi-Titrikou, K. Le Vecu des Changements Climatiques dans la Communaute Rurale d’Ekpui dans le Sud-Est du Togo. Available online: https://revues.acaref.net/wp-content/uploads/sites/3/2022/04/Salamatou-BILABENA-TITRIKOOU-KOMI.pdf (accessed on 16 October 2024).
- Coffi, S.V.E.L.S. Vulnérabilité de la Production du Manioc aux Changements Climatiques et Priorité d’adaptation dans les Agglomérations Frontalières Benin Togo (Vallée Du Mono, Afrique de l’ouest). EPRA Int. J. Res. Dev. IJRD 2023, 7, 1. [Google Scholar]
- Jans, N.; Laurent, P.-J.; Leneer, P.D.; Henin, V. Impact du Changement Climatique sur les Agriculteurs du Nord du Togo, et les Adaptations de Ceux-ci Face à ce Changement. Available online: https://louvaincooperation.org/sites/default/files/2020-08/132.MEMOIRE%20DERNIERE%20VERSION%20RAFIA%20LC..pdf (accessed on 16 October 2024).
- Edjame, K. Approche Géophysique de Définition du Climat du Littoral Océanique et du Bas-Togo. 2011. Available online: https://www.revues-ufhb-ci.org/fichiers/FICHIR_ARTICLE_1169.pdf (accessed on 16 October 2024).
- Gbafa, K.S.; Tiem, S.; Kokou, K. Characterization of Rainwater Drainage Infrastructure in the City of Lomé (Togo, West Africa). Eur. Sci. J. ESJ 2017, 13, 478. [Google Scholar] [CrossRef]
- FAOLEX. Plan National d’Adaptation aux Changements Climatiques du Togo (PNACC). 2018. Available online: https://www.fao.org/faolex/results/details/fr/c/LEX-FAOC192045/ (accessed on 16 October 2024).
- Ministère de l’Environnement et des Ressources Forestières. Plan d’Action National d’Adaptation aux Changements Climatiques (PANA). Available online: https://faolex.fao.org/docs/pdf/Tog184779.pdf (accessed on 27 September 2024).
- Kappes, M.S.; Papathoma-Köhle, M.; Keiler, M. Assessing Physical Vulnerability for Multi-Hazards Using an Indicator-Based Methodology. Appl. Geogr. 2012, 32, 577–590. [Google Scholar] [CrossRef]
- Kappes, M.; Keiler, M.; Glade, T. From Single- to Multi-Hazard Risk Analyses: A Concept Addressing Emerging Challenges. In Proceedings of the International Conference Mountain Risks: Bringing Science to Society, Firenze, Italy, 24–26 November 2010; p. 356. Available online: https://www.researchgate.net/publication/260692785_From_Single-_to_Multi-Hazard_Risk_analyses_a_concept_addressing_emerging_challenges (accessed on 14 October 2024).
- Marzocchi, W.; Mastellone, M.L.; Di Ruocco, A.; Novelli, P.; Roméo, E.; Gasparini, P. Principles of Multi-Risk Assessment: Interaction Amongst Natural and Man-Induced Risks|PDF|Risk|Hazards. Available online: https://www.scribd.com/document/616732015/DOC-2 (accessed on 14 October 2024).
- Papathoma-Köhle, M.; Schlögl, M.; Garlichs, C.; Diakakis, M.; Mavroulis, S.; Fuchs, S. A Wildfire Vulnerability Index for Buildings. Sci. Rep. 2022, 12, 6378. [Google Scholar] [CrossRef] [PubMed]
- Papathoma-Köhle, M.; Kappes, M.; Keiler, M.; Glade, T. Physical Vulnerability Assessment for Alpine Hazards: State of the Art and Future Needs Future Needs. Natural Hazards. Nat. Hazards 2012, 58, 645–680. [Google Scholar] [CrossRef]
- Birkmann, J. Indicators and Criteria for Measuring Vulnerability: Theoretical Bases and Criteria. In Measuring Vulnerability to Natural Hazards; UNU-Press: Tokyo, Japan, 2006. [Google Scholar]
- Menoni, S.; Delmonaco, G.; Galderisi, A.; Ceudech, A. Harmonised Hazard, Vulnerability and Risk Assessment Methods Informing Mitigation Strategies Addressing Land-Use Planning and Management. 2006. Available online: https://www.academia.edu/72885534/Harmonised_hazard_vulnerability_and_risk_assessment_methods_informing_mitigation_strategies_addressing_land_use_planning_and_management (accessed on 18 October 2024).
- Collins, T.W.; Grineski, S.E.; de Lourdes Romo Aguilar, M. Vulnerability to Environmental Hazards in the Ciudad Juárez (Mexico)–El Paso (USA) Metropolis: A Model for Spatial Risk Assessment in Transnational Context. Appl. Geogr. 2009, 29, 448–461. [Google Scholar] [CrossRef]
- Granger, K.; Jones, T.; Leiba, M.; Scott, G. Community Risk in Cairns: A Multi-Hazard Risk Assessment. Aust. J. Emerg. Manag. 1999, 14, 25–26. [Google Scholar]
- Puissant, A.; Malet, J.; Maquaire, O. Mapping Landslide Consequences in Mountain Areas: A Tentative Approach with a Semi-Quantitative Procedure. 11 September 2006. Available online: https://www.semanticscholar.org/paper/Mapping-landslide-consequences-in-mountain-areas%3B-a-Puissant-Malet/46f7af7f48af364fa6323115410086a7e3999e93 (accessed on 18 October 2024).
- Papathoma-Köhle, M.; Dominey-Howes, D. Tsunami Vulnerability Assessment and Its Implications for Coastal Hazard Analysis and Disaster Management Planning, Gulf of Corinth, Greece. Nat. Hazards Earth Syst. Sci. 2003, 3, 733–747. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Schlögl, M.; Fuchs, S. Vulnerability Indicators for Natural Hazards: An Innovative Selection and Weighting Approach. Sci. Rep. 2019, 9, 15026. [Google Scholar] [CrossRef] [PubMed]
- Papathoma-Köhle, M.; Ghazanfari, A.; Mariacher, R.; Huber, W.; Lücksmann, T.; Fuchs, S. Vulnerability of Buildings to Meteorological Hazards: A Web-Based Application Using an Indicator-Based Approach. Appl. Sci. 2023, 13, 6253. [Google Scholar] [CrossRef]
- l’Institut National de la Statistique et des Études Économiques et Démographiques (INSEED) Résultats Finaux du 5e Recensement Général de la Population et de l’Habitat (RGPH-5) de Novembre 2022. Available online: https://inseed.tg/depliant-et-communique-rgph/ (accessed on 26 September 2024).
- Tata, P.K. Approche Sociologique des Causes Internes du sous-Développement: La Politique de «l´Authenticité Africaine » et Paupérisation—Cas des Cérémonies Funéraires Traditionnelles des Kabiyè au Togo. Available online: https://www.researchgate.net/publication/283658049_APPROCHE_SOCIOLOGIQUE_DES_CAUSES_INTERNES_DU_SOUS_DEVELOPPEMENT_LA_POLITIQUE_DE_L_AUTHENTICITE_AFRICAINE_ET_PAUPERISATION_-_CAS_DES_CEREMONIES_FUNERAIRES_TRADITIONNELLES_DES_KABIYE_AU_TOGO (accessed on 28 September 2024).
- Caimi, A. Cultures Constructives Vernaculaires et Résilience: Entre Savoir, Pratique et Technique: Appréhender le Vernaculaire en Tant que Génie du Lieu et Génie Parasinistre. Version 1. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2014. Available online: https://theses.hal.science/tel-01148207 (accessed on 25 September 2024).
- Chamodot, M.C.; Cloquet, B. Modes d’Habiter, Cultures Constructives et Habitat de Demain au Pays Dogon; Version 1; Architecture, Aménagement de l’Espace. Master’s Thesis, École Nationale Supérieure d’Architecture de Grenoble, Grenoble, France, 2008. Available online: https://dumas.ccsd.cnrs.fr/dumas-03196898 (accessed on 25 September 2024).
- Gayibor, N.L.; Barbier, J.-C.; Marguerat, Y. Le Peuplement du Togo: État Actuel des Connaissances Historiques; Universite du Benin: Lome, Togo, 1996; Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-12/010009851.pdf (accessed on 3 September 2024).
- Sauvaget, C. Boua, Village de Koude, un Terroir Kabye (Togo Septentrional) [Etude d’Une Petite Region: Environnement Physique, Population, Agriculture, Migrations]. 1981. Available online: https://agris.fao.org/search/en/providers/123819/records/64735c2c53aa8c896308d258 (accessed on 3 September 2024).
- Moriset, S. Entretien des Sikien (Togo, Koutammakou): Cahier de Recommandations; CRAterre; Gouvernement de la Norvège; UNESCO; DPC-Togo; Ecole du Patrimoine Africain; Ecole Africaine des Métiers de l’Architecture et de l’Urbanisme; Version 1; Centre de la Construction et du Logement de Cacavéli: Lome, Togo, 2022; ISBN hal-03550868. Available online: https://hal.science/hal-03550868 (accessed on 28 September 2024).
- Tcham, B. Mythes d’Autochtonie et Histoire: Le Cas des Nawdeba. Available online: http://greenstone.lecames.org/cgi-bin/library?e=d-01000-00---off-0revu--00-1--0-10-0---0---0prompt-10---4-------0-0l--11-hi-50---20-about---01-2-1-00-0-0-11-1-0windowsZz-1253-00&a=d&c=revu&cl=CL2.15.9 (accessed on 29 September 2024).
- Fleury, F.; Arab, N.; Kabra, L.S. Les impacts du changement climatique sur l’architecture dans la Métropole Rouen Normandie. Rapport du GIEC Local pour la Métropole Rouen Normandie. Available online: https://shs.hal.science/halshs-03562554v1 (accessed on 21 October 2024).
- Koungbanane, D.; Zahiri, E.-P.; Sourou, H.; Totin Vodounon, H.; Amoussou, E.; Lare, L.; Djan, H.; Koubodana, N. Analyse Fréquentielle et Détermination des Seuils Pluvio-Hydrologiques de Risques d’Inondation dans le Bassin-Versant de l’Oti au Togo. 2020. Available online: https://www.researchgate.net/publication/363535702_Analyse_frequentielle_et_determination_des_seuils_pluvio-hydrologiques_de_risques_d’inondation_dans_le_bassin-versant_de_l’Oti_au_Togo (accessed on 22 October 2024).
- Joffroy, T.; Misse, A.; Celaire, R.; Rakotomalala, L. Architecture Bioclimatique et Efficacité Énergétique des Bâtiments au Sénégal; Version 1; CRAterre: Villefontaine, France, 2017; ISBN hal-02025559. Available online: https://hal.science/hal-02025559 (accessed on 26 September 2024).
- Hakimi, A.; Ouissi, H.; El kortbi, M.; Yamani, N. A Wetting-Drying Test for Cement-Stabilised Compressed Earth Blocks. Mater. Struct. 1998, 31, 20–26. [Google Scholar] [CrossRef]
- Givoni, B.; Hoffman, M.E. Effect of Building Materials on Internal Temperatures. 1968. Available online: https://search.worldcat.org/title/Effect-of-building-materials-on-internal-temperatures/oclc/9245620 (accessed on 23 October 2024).
- Butera, F.; Adhikari, R.; Aste, N. Conception Architecturale Durable en Milieu Tropical Principes et Applications Pour l’Afrique de l’Est. 2015. Available online: https://www.researchgate.net/publication/304538583_CONCEPTION_ARCHITECTURALE_DURABLE_EN_MILIEU_TROPICAL_Principes_et_applications_pour_l%27Afrique_de_l%27Est (accessed on 23 October 2024).
- Spekkers, M.H.; Kok, M.; Clemens, F.H.L.R.; ten Veldhuis, J.A.E. Decision-Tree Analysis of Factors Influencing Rainfall-Related Building Structure and Content Damage. Nat. Hazards Earth Syst. Sci. 2014, 14, 2531–2547. [Google Scholar] [CrossRef]
- Tirak Hizal, K. Species and Deterioration of Woods Used in a Traditional Turkish House. BioResources 2023, 19, 872–885. [Google Scholar] [CrossRef]
- Golz, S.; Naumann, T.; Neubert, M.; Günther, B. Heavy Rainfall: An Underestimated Environmental Risk for Buildings? E3S Web Conf. 2016, 7, 08001. [Google Scholar] [CrossRef]
- Salagnac, J.L.; Dorothée, M.; Florence, C.; Delpech, P.; Axès, J.-M. CSTB—Impacts des Inondations sur le Cadre Bâti et ses Usagers, Rapport Final. 2014. Available online: https://www.researchgate.net/publication/278629997_CSTB_-_Impacts_des_inondations_sur_le_cadre_bati_et_ses_usagers_rapport_final (accessed on 23 October 2024).
- Vutukuru, K.S.; Moravej, M.; Elawady, A.; Chowdhury, A.G. Holistic Testing to Determine Quantitative Wind-Driven Rain Intrusion for Shuttered and Impact Resistant Windows. J. Wind. Eng. Ind. Aerodyn. 2020, 206, 104359. [Google Scholar] [CrossRef]
- Keote, S.; Singh, R.; Kumar, D. Construction of Low Rise Buildings in Cyclone Prone Areas and Modification of Cyclone. J. Energy Power Sources 2015, 2, 247–252. [Google Scholar]
- Jing, X.; Li, Y. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings. Sci. World J. 2013, 2013, 396936. [Google Scholar] [CrossRef] [PubMed]
- Mironova, J. Wind Impact on Low-Rise Buildings When Placing High-Rises into the Existing Development. IOP Conf. Ser. Mater. Sci. Eng. 2020, 890, 012055. [Google Scholar] [CrossRef]
- Minor, J.E. Lessons Learned from Failures of the Building Envelope in Windstorms. J. Archit. Eng. 2005, 11, 10–13. [Google Scholar] [CrossRef]
- Ginger, J.; Henderson, D.; Holmes, J.; Edwards, M. Housing Damage in Windstorms and Mitigation for Australia. Int. Assoc. Wind. Eng. 2010, 2020, 1–18. [Google Scholar]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Kherais, M.; Csébfalvi, A.; Len, A. Moisture Content Changing of a Historic Roof Structure in Terms of Climate Effects. Pollack Period. 2022, 17, 141–146. [Google Scholar] [CrossRef]
- Kherais, M.; Csébfalvi, A.; Len, A.; Fülöp, A.; Pál-Schreiner, J. The Effect of Moisture Content on the Mechanical Properties of Wood Structure. Pollack Period. 2024, 19, 41–46. [Google Scholar] [CrossRef]
- Ranta-Maunus, A. Effects of Climate and Climate Variations on Strength. In Timber Engineering; Thelandersson, S., Larsen, H., Eds.; John Wiley & Sons Ltd.: West Sussex, England, 2003; pp. 153–167. Available online: https://www.wiley.com/en-us/Timber+Engineering-p-9780470844694 (accessed on 23 October 2024).
- Singh, J.; Roy, A.K. Effects of Roof Slope and Wind Direction on Wind Pressure Distribution on the Roof of a Square Plan Pyramidal Low-Rise Building Using CFD Simulation. Int. J. Adv. Struct. Eng. 2019, 11, 231–254. [Google Scholar] [CrossRef]
- Dall’Osso, F.; Gonella, M.; Gabbianelli, G.; Withycombe, G.; Dominey-Howes, D. A Revised (PTVA) Model for Assessing the Vulnerability of Buildings to Tsunami Damage. Nat. Hazards Earth Syst. Sci. 2009, 9, 1557–1565. [Google Scholar] [CrossRef]
Regions | Peoples | Prefecture | Total Population | Population Living in Authentic Vernacular Buildings | Number of Households Surveyed |
---|---|---|---|---|---|
Kara | Kabiyè | Kozah (Tchitchao, Tcharè, Awandjelo, Tchitchao waya villages) | 283,783 | 490 | 85 |
Binah (Pagouda, Somsiah, Koukoude, Farende villages) | 84,199 | 145 | 20 | ||
Nawdéba | Doufelgou (Tenega, Natoun, Baga villages) | 84,767 | 146 | 20 | |
452,749 | 781 | 125 |
Vernacular Architecture | Evolution | ||
---|---|---|---|
Kabiyè Vernacular Architecture (KVA) | Nawdéba Vernacular Architecture (NVA) | Contemporary Architecture (CA) | |
Configuration Type | Round huts, grouped in a circular fashion with a central courtyard in the center. Access to the courtyard is through the vestibule hut. | Round huts, grouped in a circular fashion with a central courtyard in the center. The entrance to the house opens onto the central courtyard. | Boxes and organizations are rectangular. |
Foundation Type | Stone foundation (width 30 cm and depth 20–30 cm). The height above ground is 40 cm. | Stone foundation (width 30 cm and depth 20–30 cm). The height above ground is 60 cm. | Foundations are made of footings, concrete pre-columns and solid cement agglomerates. |
Type of walls and execution technique | Wall made using the Bauge technique with 20 × 30 cm clods of earth. A solution based on «néré» and cow dung is applied to the wall. | Stone wall (micaceous schist or lateritic stone) 40 cm thick, made without formwork. | Wall built in mud or cement bricks, 10 to 15 cm thick, are arranged in a panneresse arrangement. |
Roof Type | Conical roof made of vegetable straw thatch supported by a wooden framework. | Conical roof made of vegetable straw thatch supported by a wooden framework. | Low-slope corrugated iron roof supported by a metal frame |
Materials of Doors and Windows | Wooden doors and windows | Wooden doors and windows | Metal or aluminum doors and windows |
Sanitation | Shower area and urinal area. No toilets in the concessions. | Shower area and urinal area. No toilets in the concessions. | Shower area with ECOSAN or VIP (Ventilated Improved Pit) toilet |
Lighting | Oil lanterns provide lighting. | Oil lanterns provide lighting. | Local power grids are available. |
Water source | Natural water reserves shared by the whole community | Natural water reserves shared by the whole community | Presence of wells per concession |
Maintenance status | Building constructed with care and in need of frequent maintenance for the roof, walls and floor | Building constructed with care and in need of frequent maintenance for the roof, walls and floor | Less frequent maintenance. It involves a lot of finances for low-quality buildings |
Planning and Turnaround Time | Carried out in the dry season, the KVA requires 3–4 weeks of work. | Carried out in the dry season, the NVA takes one month. | Carried out at any time of the year, the CA requires an average of 10 days. |
Indicators | Heavy Rain | High Heat | Strong Wind |
---|---|---|---|
Roof material | ✓ | ✓ | ✓ |
Roof shape | ✓ | ✓ | |
Roof slope | ✓ | ✓ | |
Length of overhang | ✓ | ✓ | ✓ |
Foundation height | ✓ | ||
Foundation material | ✓ | ||
Elevation material | ✓ | ✓ | ✓ |
Waterproofing of intersections on the building | ✓ | ||
Presence and state of gutter | ✓ | ||
Resistance of plastering materials | ✓ | ✓ | |
Windows type | ✓ | ✓ | |
Building shape | ✓ | ✓ | |
Height of the building | ✓ | ||
Windows material | ✓ | ||
Construction typology | ✓ | ||
Building maintenance status | ✓ | ✓ | ✓ |
Indicators | Heavy Rain | High Heat | Strong Wind |
---|---|---|---|
Roof material | 0.17 | 0.25 | 0.11 |
Roof shape | 0.17 | 0.22 | |
Roof slope | 0.24 | 0.15 | |
Length of overhang | 0.04 | 0.16 | 0.22 |
Foundation height | 0.06 | ||
Foundation material | 0.08 | ||
Elevation material | 0.03 | 0.04 | 0.03 |
Waterproofing of intersections on the building | 0.01 | ||
Presence and state of gutter | 0.04 | ||
Resistance of plastering materials | 0.01 | 0.06 | |
Windows type | 0.02 | 0.02 | |
Building shape | 0.38 | 0.04 | |
Height of the building | 0.04 | ||
Windows material | 0.02 | ||
Construction typology | 0.07 | ||
Building maintenance status | 0.12 | 0.1 | 0.07 |
RVI | |||
---|---|---|---|
Heavy Rain Hazard | High Heat Hazard | Strong Wind Hazard | |
Indicators Increasing Vulnerability Type of Building | Roof Slope Roof Shape Roof Material Building Maintenance Status | Building Shape Roof Materials | Roof Slope Roof Shape Roof Material Length of Overhang Building Maintenance Status |
CA | 0.499 | 0.522 | 0.456 |
KVA | 0.379 | 0.403 | 0.356 |
NVA | 0.359 | 0.375 | 0.316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awoussi, M.Y.; Domtse, E.K.A.; Gake, K.D.; Genovese, P.V.; Dziwonou, Y. Assessment of the Physical Vulnerability of Vernacular Architecture to Meteorological Hazards Using an Indicator-Based Approach: The Case of the Kara Region in Northern Togo. Buildings 2025, 15, 2249. https://doi.org/10.3390/buildings15132249
Awoussi MY, Domtse EKA, Gake KD, Genovese PV, Dziwonou Y. Assessment of the Physical Vulnerability of Vernacular Architecture to Meteorological Hazards Using an Indicator-Based Approach: The Case of the Kara Region in Northern Togo. Buildings. 2025; 15(13):2249. https://doi.org/10.3390/buildings15132249
Chicago/Turabian StyleAwoussi, Modeste Yaovi, Eugene Kodzo Anani Domtse, Komlan Déla Gake, Paolo Vincenzo Genovese, and Yao Dziwonou. 2025. "Assessment of the Physical Vulnerability of Vernacular Architecture to Meteorological Hazards Using an Indicator-Based Approach: The Case of the Kara Region in Northern Togo" Buildings 15, no. 13: 2249. https://doi.org/10.3390/buildings15132249
APA StyleAwoussi, M. Y., Domtse, E. K. A., Gake, K. D., Genovese, P. V., & Dziwonou, Y. (2025). Assessment of the Physical Vulnerability of Vernacular Architecture to Meteorological Hazards Using an Indicator-Based Approach: The Case of the Kara Region in Northern Togo. Buildings, 15(13), 2249. https://doi.org/10.3390/buildings15132249