Evaluation of Air Voids in Concrete Based on Cross-Section Images of Its Test Specimens
Abstract
1. Introduction
- –
- to perform a three-dimensional modelling of the distribution of air voids in concrete, to study the distribution of voids estimated from two-dimensional sections and thus justify the estimation of the three-dimensional distribution from two-dimensional images;
- –
- to develop a method for segmenting air voids in the images of sections of concrete test specimens.
2. The Literature Review
- (1)
- Based on significant simplifications adopted in the Powers model and the linear analysis method.
- (2)
- By the Philleo method [52]. The method proposed by Philleo requires only knowledge of the total air volume in the paste and the number of voids per unit volume of the paste.
- (3)
- Using a method that takes into account, in addition to the actual structure of air voids and aggregate grains, surface measurements.
- The line-traverse method records the number and lengths of chords longer than 0.008 mm of air voids along a set of test lines (traverses). The ratio of the total length of the chords to the length of the test lines determines the air content in the test sample.
- The modified method of counting points calculates the number of void fragments that cross the traverse lines and the frequency with which equidistant points (index points) fall on the voids. This method does not provide a distribution of voids by size.
- 3.
- Contrast enhancement techniques—image processing methods that increase images’ local or global contrast.
3. Materials and Methods
3.1. Materials and Equipment Used in the Experiment
3.2. Methods of Modelling Air Voids in Concrete
3.3. Method for Segmentation of Concrete Voids on Digital Images of Test Specimen Sections
4. Results and Discussion
4.1. Results of Modelling Air Voids in Concrete
4.2. Results of Concrete Void Segmentation from Digital Images of Test Specimen Sections
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Q.; Zou, Y.; Bao, J.; Zhang, P. Disposal of Solid Waste as Building Materials: A Study on the Mechanical and Durability Performance of Concrete Composed of Gold Tailings. J. Mater. Res. Technol. 2024, 30, 2111–2124. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, G.; Liang, K. Development of Fly Ash and Slag Based High-Strength Alkali-Activated Foam Concrete. Cem. Concr. Compos. 2022, 128, 104447. [Google Scholar] [CrossRef]
- Shamrai, V.; Leonets, I.; Melnyk-Shamrai, V.; Patseva, I.; Naumov, Y. Reuse of Stone Working Enterprise Slurry in Geopolymer and Concrete Products. Min. Miner. Depos. 2024, 18, 10–17. [Google Scholar] [CrossRef]
- Hossain, M.S.; Panov, V.; Choi, S.; Yun, K.K. Durability Performance of Cement Mortar Incorporating Water-Repellent Admixtures. Constr. Build. Mater. 2024, 440, 137262. [Google Scholar] [CrossRef]
- Arifin, D.N.; Sanwani, E. Potential Utilization of Natural Zeolite, Fly Ash and Rice Husk Ash for Geopolymer Concrete Production. Min. Miner. Depos. 2023, 17, 86–92. [Google Scholar] [CrossRef]
- Golewski, G.L. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection—A Review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Analysis of the limiting state of cylindrical shells with cracks with regard for the contact of crack lips. Strength Mater. 2009, 41, 560–564. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Contact Interaction of Crack Lips in Shallow Shells in Bending with Tension. Mater. Sci. 2005, 41, 486–494. [Google Scholar] [CrossRef]
- Du, J.; Wang, J.; Fu, Z. Influence of Interaction between Microcracks and Macrocracks on Crack Propagation of Asphalt Concrete. Materials 2024, 17, 2877. [Google Scholar] [CrossRef]
- Liu, K.; Fu, K.; Sang, Y.; Yang, Y.; Zou, C.; Xie, T.; Zhao, X. Frost Resistance of Recycled Aggregate Concrete: A Critical Review. J. Build. Eng. 2024, 90, 109450. [Google Scholar] [CrossRef]
- Tolubaev, K.; Zhautikov, B.; Zobnin, N.; Dairbekova, G.; Kabieva, S.; Al-Kasasbeh, R. Electron Microscopy of Non-Monocrystalline Magnetron Sputtered Silicon Thin Films Containing Fibrous Nanosilicon. Eng. J. Satbayev Univ. 2024, 146, 18–24. [Google Scholar] [CrossRef]
- Solodkyy, S.; Markiv, T.; Sobol, K.; Hunyak, O. Fracture properties of high-strength concrete obtained by direct modification of structure. MATEC Web Conf. 2017, 116, 01016. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Menéndez, B.; Wong, T.F. Imaging the pore structure of geomaterials. Science 1995, 268, 276–279. [Google Scholar] [CrossRef]
- Pelekhan, B.; Dutkiewicz, M.; Shatskyi, I.; Velychkovych, A.; Rozhko, M.; Pelekhan, L. Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue. Materials 2022, 15, 2398. [Google Scholar] [CrossRef]
- Kolesov, V.S.; Vlasov, N.M.; Tisovskii, L.O.; Shatskii, I.P. The stress-deformation state of an elastic half-space with a spheroidal thermal inclusion. Int. Appl. Mech. 1992, 28, 426–434. [Google Scholar] [CrossRef]
- Kundrat, M.M. Local fracture of an orthotropic matrix with a linear inclusion. Int. Appl. Mech. 1996, 32, 631–638. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Kundrat, A.M. Longitudinal shear of a body with mutually immobile rigid collinear inclusions. Mater. Sci. 2004, 40, 376–382. [Google Scholar] [CrossRef]
- Velychkovych, A.; Ropyak, L.; Dubei, O. Strength Analysis of a Two-Layer PETF-Concrete Column with Allowance for Contact Interaction between Layers. Adv. Mater. Sci. Eng. 2021, 2021, 4517657. [Google Scholar] [CrossRef]
- Ropyak, L.; Shihab, T.; Velychkovych, A.; Bilinskyi, V.; Malinin, V.; Romaniv, M. Optimization of plasma electrolytic oxidation technological parameters of deformed aluminum alloy D16T in flowing electrolyte. Ceramics 2023, 6, 146–167. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to plasma electrolytic oxidation—an overview of the process and applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Student, M.M.; Ivasenko, I.B.; Posuvailo, V.M. Influence of the porosity of a plasma-electrolytic coating on the corrosion resistance of D16 alloy. Mater. Sci. 2019, 54, 899–906. [Google Scholar] [CrossRef]
- Ropyak, L.; Shihab, T.; Velychkovych, A.; Dubei, O.; Tutko, T.; Bilinskyi, V. Design of a Two-Layer Al–Al2O3 Coating with an Oxide Layer Formed by the Plasma Electrolytic Oxidation of Al for the Corrosion and Wear Protections of Steel. Prog. Phys. Met. 2023, 24, 319–365. [Google Scholar] [CrossRef]
- Naebe, M.; Shirvanimoghaddam, K. Functionally graded materials: A review of fabrication and properties. Appl. Mater. Today 2016, 5, 223–245. [Google Scholar] [CrossRef]
- Shatskyi, I.; Makoviichuk, M.; Ropyak, L.; Velychkovych, A. Analytical model of deformation of a functionally graded ceramic coating under local load. Ceramics 2023, 46, 1879–1893. [Google Scholar] [CrossRef]
- Panasyuk, V.V.; Sylovanyuk, V.P.; Marukha, V.I. Injection Technologies for the Repair of Damaged Concrete Structures; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Shatskyi, I.; Kurtash, I. Strength of plate with the filled crack under multiparameter loading. Procedia Struct. Integr. 2018, 13, 1482–1487. [Google Scholar] [CrossRef]
- Suprun, V.Y.; Marukha, V.I.; Sylovaniuk, V.P. Recycling Technologies for Polyurethane Wastes (A Survey). Mater. Sci. 2022, 57, 755–764. [Google Scholar] [CrossRef]
- Shats’kyi, I.P. Limiting equilibrium of a plate with partially healed crack. Mater. Sci. 2015, 51, 322–330. [Google Scholar] [CrossRef]
- Dalyak, T.M.; Shatsky, I.P. On brittle fracture of a body with partial healed star-shaped crack. Bull. Taras Shevchenko Natl. Univ. Kyiv Phys. Math. 2023, 2, 100–103. [Google Scholar] [CrossRef]
- Stankevych, V.Z.; Zhbadynskyi, I.Y.; Babyak, M.O. Dynamic Strength of an Elastic Matrix with a Partially Healed Crack. In Proceedings of the 2024 IEEE 29th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Tbilisi, Georgia, 11–13 September 2024; pp. 240–243. [Google Scholar] [CrossRef]
- Nemati, K.M.; Stroeven, P. Stereological analysis of micromechanical behavior of concrete. Mater. Struct. 2001, 34, 486–494. [Google Scholar] [CrossRef]
- Head, M.K.; Buenfeld, N.R. Confocal imaging of porosity in hardened concrete. Cem. Concr. Res. 2006, 36, 896–911. [Google Scholar] [CrossRef]
- Shamrai, V.; Melnyk-Shamrai, V.; Leonets, I.; Korobiichuk, V.; Lutsenko, S. Quality Index Control for Building Products Made of Natural Facing Stone. Min. Miner. Depos. 2023, 17, 12–21. [Google Scholar] [CrossRef]
- Fonseca, P.C.; Scherer, G.W. An image analysis procedure to quantify the air void system of mortar and concrete. Mater. Struct. 2015, 48, 3087–3098. [Google Scholar] [CrossRef]
- Stroeven, P. Application of various stereological methods to the study of the grain and the crack structure of concrete. J. Microsc. 1976, 107, 313–321. [Google Scholar] [CrossRef]
- Elsen, J.; Lens, N.; Vyncke, J.; Aarre, T.; Quenard, D.; Smolej, V. Quality assurance and quality control of air entrained concrete. Cem. Concr. Res. 1994, 24, 1267–1276. [Google Scholar] [CrossRef]
- Ojala, T.; Chen, Y.; Punkki, J.; Al-Neshawy, F. Characteristics of Entrained Air Voids in Hardened Concrete with the Method of Digital Image Analysis Coupled with Schwartz-Saltykov Conversion. Materials 2021, 14, 2493. [Google Scholar] [CrossRef]
- Wawrzeńczyk, J.; Kozak, W. A method of analyzing the porous microstructure in air-entrained concrete on the basis on 2D image analysis. Procedia Eng. 2015, 108, 102–107. [Google Scholar] [CrossRef]
- Başyiğit, C.; Comak, B.; Kilincarslan, S.; Uncu, İ.S. Assessment of concrete compressive strength by image processing technique. Constr. Build. Mater. 2012, 37, 526–532. [Google Scholar] [CrossRef]
- Guo, L.; Wang, W.; Zhong, L.; Guo, L.; Zhang, F.; Guo, Y. Texture analysis of the microstructure of internal curing concrete based on image recognition technology. Case Stud. Constr. Mater. 2022, 17, e01360. [Google Scholar] [CrossRef]
- Mayercsik, N.P.; Felice, R.; Ley, M.T.; Kurtis, K.E. A probabilistic technique for entrained air void analysis in hardened concrete. Cem. Concr. Res. 2014, 59, 16–23. [Google Scholar] [CrossRef]
- Mandziy, T.S.; Ivasenko, I.B.; Berehulyak, O.R.; Vorobel, R.A.; Maksymenko, O.P.; Ivanytskyi, Y.L. Optimization method for segmentation of concrete components in digital images of test sample sections. Inf. Extr. Process. 2022, 50, 62–68. [Google Scholar] [CrossRef]
- Ghahremani, G.; Bagheri, A.; Zanganeh, H. The effect of size and shape of pores on the prediction model of compressive strength of foamed concrete. Constr. Build. Mater. 2023, 371, 130720. [Google Scholar] [CrossRef]
- Trussell, N.; Stangeland, M.; Gaute, H.; Snyder, K.I.; Endrerud, P.E.; Jacobsen, S. Anisotropy and macro porosity in wet sprayed concrete: Laminations, fibre orientation and macro pore properties measured by image analysis, PF test, water penetration and CT scanning. Constr. Build. Mater. 2023, 389, 131715. [Google Scholar] [CrossRef]
- Wei, W.; Ding, L.; Luo, H.; Li, C.; Li, G. Automated bughole detection and quality performance assessment of concrete using image processing and deep convolutional neural networks. Constr. Build. Mater. 2021, 281, 122576. [Google Scholar] [CrossRef]
- Wei Chong, B.; Othman, R.; Jaya, R.P.; Shu Ing, D.; Li, X.; Wan Ibrahim, M.H.; Abdullah, M.M.A.B.; Sandu, A.V.; Płoszaj, B.; Szmidla, J.; et al. Image Analysis of Surface Porosity Mortar Containing Processed Spent Bleaching Earth. Materials 2021, 14, 1658. [Google Scholar] [CrossRef]
- C 457-16; Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete. ASTM international: West Conshohocken, PA, USA, 2016.
- Powers, T.C. The air requirement of frost resistant concrete. Proc. Highw. Res. Board 1949, 29, 184–211. Available online: https://onlinepubs.trb.org/Onlinepubs/hrbproceedings/29/29-010.pdf (accessed on 20 May 2025).
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 9780071797870. [Google Scholar]
- Wolter, S.; Uhre, F.A.H.; Hasholt, M.T.; Dahl, V.A.; Anton, F. Air void analysis of hardened concrete by means of photogrammetry. Constr. Build. Mater. 2019, 226, 953–964. [Google Scholar] [CrossRef]
- Warren, C. Determination of Properties of Air Voids in Concrete. Bulletin No. 70; Highway Research Board: Washington, DC, USA, 1953; pp. 1–10. Available online: http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/70/70-001.pdf (accessed on 20 May 2025).
- Philleo, R.E. A Method for Analyzing Void Distribution In Air-Entrained Concrete. CCA 1983, 5, 128–130. [Google Scholar] [CrossRef]
- Schouenborg, B.; Lindqvist, J.; Sandström, M. Air and air void structures in concrete—General overview and picture atlas. Nordtest project 1121-93. In Engineering; Swedish National Testing and Research Institute: Borås, Sweden, 1995; p. 50. Available online: https://www.diva-portal.org/smash/get/diva2:961912/FULLTEXT01.pdf (accessed on 20 May 2025).
- Molendowska, A.; Wawrzeńczyk, J.; Kowalczyk, H. Development of the Measuring Techniques for Estimating the Air Void System Parameters in Concrete Using 2D Analysis Method. Materials 2020, 13, 428. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahman, S.; Bhatt, S.; Faezipour, M. A Systematic Review on Advancement of Image Segmentation Techniques for Fault Detection Opportunities and Challenges. Electronics 2025, 14, 974. [Google Scholar] [CrossRef]
- Vorobel, R.; Student, O.; Ivasenko, I.; Maruschak, P.; Krechkovska, H.; Zvirko, O.; Berehulyak, O.; Mandziy, T.; Tsybailo, I.; Solovei, P. Development of a method for computer processing of fractographic images to assess the cohesion of inclusions to the matrix in the weld metal after its operational degradation and hydrogenation. Materialia 2024, 34, 102074. [Google Scholar] [CrossRef]
- Mandziy, T.; Ivasenko, I.; Berehulyak, O.; Vorobel, R.; Bembenek, M.; Kryshtopa, S.; Ropyak, L. Evaluation of the Degree of Degradation of Brake Pad Friction Surfaces Using Image Processing. Lubricants 2024, 12, 172. [Google Scholar] [CrossRef]
- Rezaei, F.; Izadi, H.; Memarian, H.; Baniassadi, M. The effectiveness of different thresholding techniques in segmenting micro CT images of porous carbonates to estimate porosity. J. Pet. Sci. Eng. 2019, 177, 518–527. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Han, D.; Qin, X.; Feng, J. Research on threshold segmentation algorithm of coal CT images based on improved Otsu. Coal Sci. Technol. 2021, 49, 264–271. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Liu, J.; Zhang, Z.; Huang, Q.; Xu, H. Characterization of coal permeability considering fracture shape using the MP-Otsu threshold segmentation algorithm. J. Ind. Saf. 2024, 1, 100021. [Google Scholar] [CrossRef]
- Yu, C.; Wu, W.; Zheng, J.; Zeng, W.; Zheng, D.; Li, Z.; Chen, C.; Wang, S. A multi-stage adaptive Otsu thresholding algorithm for pore segmentation in rock thin-section images. Earth Sci. Inform. 2025, 18, 239. [Google Scholar] [CrossRef]
- Ivanytskyi, Y.L.; Blikharskyi, Z.Y.; Maksymenko, O.P.; Panchenko, O.V.; Blikharskyi, Y.Z. Development of the Methodology for Monitoring the Technical State of Bridge Structures and Establishment of Safe Operating Period. Mater. Sci. 2024, 59, 711–719. [Google Scholar] [CrossRef]
- C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2016.
- Berehulyak, O.; Vorobel, R.; Ivasenko, I. Color Image Enhancement by Logarithmic Transformation in Fuzzy Domain. In Proceedings of the IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; pp. 1147–1151. [Google Scholar] [CrossRef]
- Mandziy, T.; Ivasenko, I.; Berehulyak, O.; Vorobel, R. Influence of Colour Restoration on Rust Image Segmentation. In Proceedings of the IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 26–28 August 2021; pp. 68–73. [Google Scholar] [CrossRef]
- Javorskyj, I.; Yuzefovych, R.; Lychak, O.; Matsko, I. Hilbert transform for covariance analysis of periodically nonstationary random signals with high-frequency modulation. ISA Trans. 2024, 144, 452–481. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Kuryliak, A.; Skaskiv, O.; Bandura, A. Arbitrary Random Variables and Wiman’s Inequality. Axioms 2024, 13, 739. [Google Scholar] [CrossRef]
- Kuryliak, A. Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents. Mat. Stud. 2023, 59, 178–186. [Google Scholar] [CrossRef]
- Bandura, A.I. Composition of entire functions and bounded L-index in direction. Mat. Stud. 2017, 47, 179–184. [Google Scholar] [CrossRef]
- Bandura, A.I.; Skaskiv, O.B. Analytic functions in the unit ball of bounded L-index: Asymptotic and local properties. Mat. Stud. 2017, 48, 37–73. [Google Scholar] [CrossRef]
- Bradley, D.; Roth, G. Adapting Thresholding Using the Integral Image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Pleau, R.; Pigeon, M.; Laurencot, J.L. Some findings on the usefulness of image analysis for determining the characteristics of the air-void system on hardened concrete. Cem. Concr. Compos. 2001, 23, 237–246. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Y.; Zhang, J. Characterization of air voids and frost resistance of concrete based on industrial computerized tomographical technology. Constr. Build. Mater. 2018, 168, 975–983. [Google Scholar] [CrossRef]
- Tao, J.; Gong, H.; Wang, F.; Luo, X.; Qiu, X.; Huang, Y. Automated image segmentation of air voids in hardened concrete surface using photometric stereo method. Int. J. Pavement Eng. 2022, 23, 5168–5185. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, J.; Gao, L.; Liu, Y.; Tang, L. Three-dimensional characterization of air voids in porous asphalt concrete. Constr. Build. Mater. 2021, 272, 121633. [Google Scholar] [CrossRef]
- Liu, Z.; Hansen, W.; Meng, B. Characterisation of air-void systems in concrete. Mag. Concr. Res. 2016, 68, 178–186. [Google Scholar] [CrossRef]
- Yan, J.; Wang, J.; Chen, H.; Xiang, P. High Temperature Exposure Assessment of Graphene Oxide Reinforced Cement. Front. Mater. 2022, 9, 786260. [Google Scholar] [CrossRef]
Concrete Grade | Mobility Class | Cement CEM II/A-LL 42.5, PC “Ivano-Frankivskcement”, Ivano-Frankivsk, Ukraine, kg | Sand * (Kovalska, Rozvadiv, Lviv region, Ukraine), kg | Crushed Stone Fraction (15–20 mm), kg | Water, kg |
---|---|---|---|---|---|
C10 | S4 | 230 | 740 | 1170 | 200 |
C15 | 280 | 700 | 1160 | 200 | |
C20 | 310 | 690 | 1150 | 200 | |
C25 | 350 | 670 | 1140 | 205 | |
C30 | 390 | 645 | 1140 | 210 |
Section Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Averaged |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of void pixels | 488 | 822 | 709 | 307 | 1210 | 601 | 907 | 634 | 434 | 567 | 668 |
Air content, % | 0.19 | 0.31 | 0.27 | 0.12 | 0.46 | 0.23 | 0.35 | 0.24 | 0.17 | 0.22 | 0.29 |
Section Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Averaged |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of void pixels | 964 | 1688 | 1337 | 1367 | 1889 | 1530 | 1377 | 1377 | 1190 | 1325 | 1404 |
Air content, % | 0.37 | 0.64 | 0.51 | 0.52 | 0.72 | 0.58 | 0.53 | 0.53 | 0.45 | 0.51 | 0.54 |
Section Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Averaged |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of void pixels | 12,801 | 11,545 | 13,107 | 13,343 | 13,076 | 12,433 | 12,099 | 13,608 | 13,123 | 12,189 | 12,801 |
Air content, % | 4.88 | 4.4 | 5 | 5.09 | 4.99 | 4.74 | 4.62 | 5.19 | 5.01 | 4.65 | 4.88 |
Concrete Grade | Average Air Content for the Sample, % | Average Percentage of Aggregate for the Samples, % | The Average Compressive Strength of Concrete According to Experiments, MPa | Concrete Specific Density, kg/m3 |
---|---|---|---|---|
C10 | 4.28 | 42.50 | 13.30 | 2275 |
C15 | 1.22 | 47.00 | 21.70 | 2300 |
C25 | 0.65 | 44.50 | 36.10 | 2370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozynskyi, V.; Ivasenko, I.; Vorobel, R.; Berehulyak, O.; Mandziy, T.; Voronyak, T.; Ivanytskyi, Y.; Maksymenko, O.; Ropyak, L. Evaluation of Air Voids in Concrete Based on Cross-Section Images of Its Test Specimens. Buildings 2025, 15, 2241. https://doi.org/10.3390/buildings15132241
Lozynskyi V, Ivasenko I, Vorobel R, Berehulyak O, Mandziy T, Voronyak T, Ivanytskyi Y, Maksymenko O, Ropyak L. Evaluation of Air Voids in Concrete Based on Cross-Section Images of Its Test Specimens. Buildings. 2025; 15(13):2241. https://doi.org/10.3390/buildings15132241
Chicago/Turabian StyleLozynskyi, Vasyl, Iryna Ivasenko, Roman Vorobel, Olena Berehulyak, Teodor Mandziy, Taras Voronyak, Yaroslav Ivanytskyi, Oleksandr Maksymenko, and Liubomyr Ropyak. 2025. "Evaluation of Air Voids in Concrete Based on Cross-Section Images of Its Test Specimens" Buildings 15, no. 13: 2241. https://doi.org/10.3390/buildings15132241
APA StyleLozynskyi, V., Ivasenko, I., Vorobel, R., Berehulyak, O., Mandziy, T., Voronyak, T., Ivanytskyi, Y., Maksymenko, O., & Ropyak, L. (2025). Evaluation of Air Voids in Concrete Based on Cross-Section Images of Its Test Specimens. Buildings, 15(13), 2241. https://doi.org/10.3390/buildings15132241