A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model
Abstract
1. Introduction
2. Modelling Approach
3. Validation
3.1. The Arch Tested in Novi Ligure
3.2. The Arch Tested in the Universidad Del Pais Vasco
3.3. The Cloister Vault of the Former Monastery of Santa Maria Della Pace
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pourfouladi, M.; Pingaro, N.; Valente, M. PoliBrick Plugin as a Parametric Tool for Digital Stereotomy Modelling. Comput. Struct. 2025, 311, 107722. [Google Scholar] [CrossRef]
- Kooharian, A. Limit Analysis of Voussoir (Segmental) and Concrete Archs. ACI J. Proc. 1952, 49, 317–328. [Google Scholar] [CrossRef]
- Pippard, A.J.S. The Approximate Estimation of Safe Loads on Masonry Bridges. In The Civil Engineer in War; Thomas Telford Ltd.: London, UK, 1948; pp. 365–372. [Google Scholar]
- Heyman, J. The Safety of Masonry Arches. Int. J. Mech. Sci. 1969, 11, 363–385. [Google Scholar] [CrossRef]
- O’Dwyer, D. Funicular Analysis of Masonry Vaults. Comput. Struct. 1999, 73, 187–197. [Google Scholar] [CrossRef]
- Foraboschi, P. Resisting System and Failure Modes of Masonry Domes. Eng. Fail. Anal. 2014, 44, 315–337. [Google Scholar] [CrossRef]
- Zizi, M.; Corlito, V.; Cacace, D.; De Matteis, G. Limit Analysis for Triumphal Arches in Masonry Churches: Case Study from L’Aquila 2009 and Central Italy 2016–17 Earthquakes; Springer: Berlin/Heidelberg, Germany, 2022; Volume 209 LNCE, ISBN 9783030907877. [Google Scholar]
- Milani, E.; Milani, G.; Tralli, A. Limit Analysis of Masonry Vaults by Means of Curved Shell Finite Elements and Homogenization. Int. J. Solids Struct. 2008, 45, 5258–5288. [Google Scholar] [CrossRef]
- Aita, D.; Milani, G.; Taliercio, A. Limit Analysis of Masonry Domes with Oculus and Lantern: A Comparison between Different Approaches. Math. Mech. Solids 2023, 30, 6–28. [Google Scholar] [CrossRef]
- Buzzetti, M.; Pingaro, N.; Milani, G. Automatic Detection of Local Collapse Mechanisms in Historical Masonry Buildings: Fast and Robust FE Upper Bound Limit Analysis. Eng. Fail. Anal. 2025, 170, 109310. [Google Scholar] [CrossRef]
- Nodargi, N.A.; Bisegna, P. A Unifying Computational Approach for the Lower-Bound Limit Analysis of Systems of Masonry Arches and Buttresses. Eng. Struct. 2020, 221, 110999. [Google Scholar] [CrossRef]
- Riveiro, B.; Solla, M.; De Arteaga, I.; Arias, P.; Morer, P. A Novel Approach to Evaluate Masonry Arch Stability on the Basis of Limit Analysis Theory and Non-Destructive Geometric Characterization. Autom. Constr. 2013, 31, 140–148. [Google Scholar] [CrossRef]
- Nela, B.; Jiménez Rios, A.; Pingaro, M.; Reccia, E.; Trovalusci, P. Limit Analysis of Locally Reinforced Masonry Arches. Eng. Struct. 2022, 271, 114921. [Google Scholar] [CrossRef]
- Papa, T.; Grillanda, N.; Milani, G. Three-Dimensional Adaptive Limit Analysis of Masonry Arch Bridges Interacting with the Backfill. Eng. Struct. 2021, 248, 113189. [Google Scholar] [CrossRef]
- Zampieri, P.; Simoncelo, N.; Tetougueni, C.D.; Pellegrino, C. A Review of Methods for Strengthening of Masonry Arches with Composite Materials. Eng. Struct. 2018, 171, 154–169. [Google Scholar] [CrossRef]
- Zampieri, P.; Piazzon, R.; Santinon, D.; Hofer, L.; Toska, K.; Faleschini, F.; Pellegrino, C.; Iacobini, F.; Vecchi, A.; Iodice, F.; et al. Intrados FRCM-Strengthening of a Masonry Bridge: Experimental and Analytical Investigations. Eng. Struct. 2025, 323, 119215. [Google Scholar] [CrossRef]
- Zampieri, P.; Piazzon, R.; Niero, L.; Pellegrino, C. Damaged Masonry Arch Bridges Strengthened with External Post-Tensioning: Experimental and Numerical Results. Eng. Struct. 2024, 318, 117929. [Google Scholar] [CrossRef]
- Ural, A.; Firat, F.K.; Tuğrulelçi, S.; Kara, M.E. Experimental and Numerical Study on Effectiveness of Various Tie-Rod Systems in Brick Arches. Eng. Struct. 2016, 110, 209–221. [Google Scholar] [CrossRef]
- Bertolesi, E.; Torres, B.; Adam, J.M.; Calderón, P.A.; Moragues, J.J. Effectiveness of Textile Reinforced Mortar (TRM) Materials for the Repair of Full-Scale Timbrel Masonry Cross Vaults. Eng. Struct. 2020, 220, 110978. [Google Scholar] [CrossRef]
- Tanriverdi, S. An Experimental and Numerical Study of the Strengthening of Masonry Brick Vaults. Structures 2023, 47, 800–813. [Google Scholar] [CrossRef]
- Varró, R.; Bögöly, G.; Görög, P. Laboratory and Numerical Analysis of Failure of Stone Masonry Arches with and without Reinforcement. Eng. Fail. Anal. 2021, 123, 105272. [Google Scholar] [CrossRef]
- European Committee for Standardization. Eurocode 6: Design of Masonry Structures; European Commission: Brussels, Belgium, 1996.
- Audenaert, A.; Fanning, P.; Sobczak, L.; Peremans, H. 2-D Analysis of Arch Bridges Using an Elasto-Plastic Material Model. Eng. Struct. 2008, 30, 845–855. [Google Scholar] [CrossRef]
- Gago, A.S.; Alfaiate, J.; Lamas, A. The Effect of the Infill in Arched Structures: Analytical and Numerical Modelling. Eng. Struct. 2011, 33, 1450–1458. [Google Scholar] [CrossRef]
- Kishen, J.M.C.; Ramaswamy, A.; Manohar, C.S. Safety Assessment of a Masonry Arch Bridge: Field Testing and Simulations. J. Bridge Eng. 2013, 18, 162–171. [Google Scholar] [CrossRef]
- Carini, A.; Genna, F. Stability and Strength of Old Masonry Vaults under Compressive Longitudinal Loads: Engineering Analyses of a Case Study. Eng. Struct. 2012, 40, 218–229. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Brencich, A.; Gambarotta, L. A Simplified Assessment of the Dome and Drum of the Basilica of S. Maria Assunta in Carignano in Genoa. Eng. Struct. 2013, 56, 749–765. [Google Scholar] [CrossRef]
- D’Ayala, D.F.; Tomasoni, E. Three-Dimensional Analysis of Masonry Vaults Using Limit State Analysis with Finite Friction. Int. J. Archit. Herit. 2011, 5, 140–171. [Google Scholar] [CrossRef]
- Theodossopoulos, D.; Sinha, B.P.; Usmani, A.S.; Macdonald, A.J. Assessment of the Structural Response of Masonry Cross Vaults. Strain 2002, 38, 119–127. [Google Scholar] [CrossRef]
- Creazza, G.; Matteazzi, R.; Saetta, A.; Vitaliani, R. Analyses of Masonry Vaults: A Macro Approach Based on Three-Dimensional Damage Model. J. Struct. Eng. 2002, 128, 646–654. [Google Scholar] [CrossRef]
- Sarhosis, V.; De Santis, S.; de Felice, G. A Review of Experimental Investigations and Assessment Methods for Masonry Arch Bridges. Struct. Infrastruct. Eng. 2016, 12, 1439–1464. [Google Scholar] [CrossRef]
- Dimitri, R.; De Lorenzis, L.; Zavarise, G. Numerical Study on the Dynamic Behavior of Masonry Columns and Arches on Buttresses with the Discrete Element Method. Eng. Struct. 2011, 33, 3172–3188. [Google Scholar] [CrossRef]
- Giamundo, V.; Sarhosis, V.; Lignola, G.P.; Sheng, Y.; Manfredi, G. Evaluation of Different Computational Modelling Strategies for the Analysis of Low Strength Masonry Structures. Eng. Struct. 2014, 73, 160–169. [Google Scholar] [CrossRef]
- Lemos, J.V. Discrete Element Modeling of Masonry Structures. Int. J. Archit. Herit. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Janssen, H.J.M. Numerical studies with UDEC. In Structural Masonry: An Experimental/Numerical Basis for Practical Design Rules; Rots, J.G., Ed.; Balkema: Kalamazoo, MI, USA, 1997; pp. 96–106. Available online: https://research.tue.nl/en/publications/numerical-studies-with-udec (accessed on 29 April 2025).
- Sarhosis, V.; Sheng, Y. Identification of Material Parameters for Low Bond Strength Masonry. Eng. Struct. 2014, 60, 100–110. [Google Scholar] [CrossRef]
- Pingaro, N.; Milani, G. Simple Non-Linear Numerical Modelling of Masonry Arches Reinforced with SRG Using Elasto-Fragile and Elasto-Ductile Truss Finite Elements. Eng. Struct. 2023, 293, 116637. [Google Scholar] [CrossRef]
- Pingaro, N.; Buzzetti, M.; Milani, G. Advanced FE Nonlinear Numerical Modeling to Predict Historical Masonry Vaults Failure: Assessment of Risk Collapse for a Long Span Cloister Vault Heavily Loaded at the Crown by Means of a General-Purpose Numerical Protocol. Eng. Fail. Anal. 2025, 167, 109070. [Google Scholar] [CrossRef]
- Gandolfi, A.; Pingaro, N.; Milani, G. Simple Non-Linear Numerical Modelling for Unreinforced and FRP-Reinforced Masonry Domes. Buildings 2024, 14, 166. [Google Scholar] [CrossRef]
- Gandolfi, A.; Pingaro, N.; Milani, G. Elastic Body Spring Method (EBSM) for the Stability Analysis of the Global Vipassana Pagoda in Mumbai, India. Buildings 2025, 15, 653. [Google Scholar] [CrossRef]
- Carozzi, F.G.; Poggi, C.; Bertolesi, E.; Milani, G. Ancient Masonry Arches and Vaults Strengthened with TRM, SRG and FRP Composites: Experimental Evaluation. Compos. Struct. 2018, 187, 466–480. [Google Scholar] [CrossRef]
- Garmendia, L.; San-José, J.T.; García, D.; Larrinaga, P. Rehabilitation of Masonry Arches with Compatible Advanced Composite Material. Constr. Build. Mater. 2011, 25, 4374–4385. [Google Scholar] [CrossRef]
- Ministero delle Infrastrutture e dei Trasporti Decreto 17 Gennaio 2018—Aggiornamento Delle “Norme Tecniche per Le Costruzioni”. Gazzetta Ufficiale della Repubblica Italiana. 2018. Available online: http://www.gazzettaufficiale.it/eli/id/2018/02/20/18A00716/sg (accessed on 29 April 2025).
- Bertolesi, E.; Milani, G.; Carozzi, F.G.; Poggi, C. Ancient Masonry Arches and Vaults Strengthened with TRM, SRG and FRP Composites: Numerical Analyses. Compos. Struct. 2018, 187, 385–402. [Google Scholar] [CrossRef]
- Garmendia, L.; Marcos, I.; Garbin, E.; Valluzzi, M.R. Strengthening of Masonry Arches with Textile-Reinforced Mortar: Experimental Behaviour and Analytical Approaches. Mater. Struct. Mater. Constr. 2014, 47, 2067–2080. [Google Scholar] [CrossRef]
- Hua, Y.; Milani, G. Simple Modeling of Reinforced Masonry Arches for Associated and Non-Associated Heterogeneous Limit Analysis. Comput. Struct. 2023, 280, 106987. [Google Scholar] [CrossRef]
- Acito, M.; Buzzetti, M.; Cundari, G.A.; Milani, G. General Methodological Approach for the Seismic Assessment of Masonry Aggregates. Structures 2023, 57, 105177. [Google Scholar] [CrossRef]
- Gelfi, P. Role of Horizontal Backfill Passive Pressure on the Stability of Masonry Vaults / Zum Einfluss Des Passiven Druckes Aus Der Hinterfüllung Auf Die Stabilität von Gewölben Aus Mauerwerk. Restor. Build. Monum. 2002, 8, 573–590. [Google Scholar] [CrossRef]
- Pingaro, N.; Calabrese, A.S.; Milani, G.; Poggi, C. Debonding Sawtooth Analytical Model and FE Implementation with In-House Experimental Validation for SRG-Strengthened Joints Subjected to Direct Shear. Compos. Struct. 2023, 319, 117113. [Google Scholar] [CrossRef]
- Milani, G. Simple Model with In-Parallel Elasto-Fragile Trusses to Characterize Debonding on FRP-Reinforced Flat Substrates. Compos. Struct. 2022, 296, 115874. [Google Scholar] [CrossRef]
- Buzzetti, M.; Gandolfi, A.; Pingaro, N.; Milani, G. A New Advanced and Simple Procedure for the Nonlinear Static Analysis of Curved Masonry Structures. In International Conference on Protection of Historical Constructions; Springer: Cham, Switzerland, 2025; pp. 176–183. [Google Scholar]
- Pingaro, N.; Cardani, G.; Coronelli, D.; Milani, G. On the Stability of Masonry Arches Through Limit Analysis and a Nonlinear Finite Element-Based Method. In International Conference on Protection of Historical Constructions; Springer: Cham, Switzerland, 2025; pp. 201–208. [Google Scholar]
Result by | Type of Analysis | Peak Load [kN] | Error [%] |
---|---|---|---|
Present FE Analysis | FEM | 2.18 | Baseline |
Pingaro & Milani (2023) [37] | FEM | 2.18 | 0% |
Bertolesi et al. (2018) [44] | FEM | 2.22 | 2% |
Pingaro & Milani (2023) [37] | Manual LA | 2.01 | −8% |
Bertolesi et al. (2018) [44] | Lower Bound LA | 1.96 | −10% |
Carozzi et al. (2018) [41] | Experimental | 2.06 | −6% |
Result by | Type of Analysis | Peak Load [kN] | Error [%] |
---|---|---|---|
Present FE Analysis | FEM | 1.59 | Baseline |
Garmendia et al. (2014) [45] | FEM | 1.46 | −8% |
Garmendia et al. (2014) [45] | LA | 1.58 | −1% |
Present Analysis | Manual LA | 1.55 | −3% |
Present Analysis | Lower Bound LA | 1.54 | −3% |
Present Analysis | Upper Bound LA | 1.52 | −4% |
Garmendia et al. (2011) [42] | Experimental | 1.41 | −11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pingaro, N.; Buzzetti, M.; Gandolfi, A. A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model. Buildings 2025, 15, 2226. https://doi.org/10.3390/buildings15132226
Pingaro N, Buzzetti M, Gandolfi A. A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model. Buildings. 2025; 15(13):2226. https://doi.org/10.3390/buildings15132226
Chicago/Turabian StylePingaro, Natalia, Martina Buzzetti, and Alessandro Gandolfi. 2025. "A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model" Buildings 15, no. 13: 2226. https://doi.org/10.3390/buildings15132226
APA StylePingaro, N., Buzzetti, M., & Gandolfi, A. (2025). A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model. Buildings, 15(13), 2226. https://doi.org/10.3390/buildings15132226