Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
Abstract
1. Introduction
2. Experiments
2.1. Specimen Design
2.2. Materials Properties
2.3. Loading Device and Loading System
3. Analysis of Test Results
3.1. Failure Modes
3.2. Hysteresis Curve
3.3. Skeleton Curve
4. Restoring Force Model
4.1. Skeleton Curve Model
4.1.1. Yield Point
- (1)
- Yield load Py
- (2)
- Yield displacement Δy
- (3)
- Yield stiffness Ky
4.1.2. Peak Point
- (1)
- Peak load Pm
- (2)
- Peak displacement Δm
- (3)
- Peak stiffness Km
4.1.3. Limit Point
- (1)
- Limit load Pu
- (2)
- Limit stiffness Ku
- (3)
- Limit displacement Δu
4.2. Determination of Restoring-Force Model
4.2.1. Unloading Stiffness Ki
4.2.2. Hysteretic Rule
4.3. Verification of Restoring Force Model
4.3.1. Validation of Skeleton Model
4.3.2. Verification of Hysteresis Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Xue, W.; Lv, Y. Seismic Behavior of a New Type of Precast Concrete Shear Wall Using UHPC Connections at Boundary Elements. Eng. Struct. 2024, 302, 117468. [Google Scholar] [CrossRef]
- Hu, X.; Xue, W.; Lv, Y. Experimental Studies on Structural Performance of Precast Concrete Shear Walls with Innovative UHPC-Based Connections. J. Build. Eng. 2023, 73, 106748. [Google Scholar] [CrossRef]
- Xue, W.; Huang, Q.; Gu, X.; Hu, X. Hysteretic Behavior of Precast Concrete Shear Walls with Steel Sleeve-Corrugated Metallic Duct Hybrid Connections. Structures 2022, 38, 820–831. [Google Scholar] [CrossRef]
- Liu, H.; Guo, R.; Wang, Z.; Du, X.; Liu, M.; Kong, P. Experimental Study on Seismic Performance of Precast Concrete Shearing Walls Connected by High-Strength Bolts. J. Build. Eng. 2025, 101, 111817. [Google Scholar] [CrossRef]
- Sun, J.; Qiu, H.; Lu, Y. Experimental Study and Associated Numerical Simulation of Horizontally Connected Precast Shear Wall Assembly. Struct. Des. Tall Spec. Build. 2016, 25, 659–678. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Zhang, P.; Ma, K.; Zhang, H.; Qiao, J. Research on Seismic Behavior of Precast Concrete Shear Wall with New Steel Plate-Bolted Horizontal Connection. J. Build. Eng. 2024, 85, 108719. [Google Scholar] [CrossRef]
- Xiao, T.; Sheng, J.; Chen, Y.; Chen, B. Research Progress on Bolting Connection of Prefabricated Concrete Shear Wall. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 592, 012013. [Google Scholar] [CrossRef]
- Gu, S.; Gu, J.-B.; Guo, J.-Y.; Tao, Y.; Zhang, J. Seismic Performance of Precast Concrete Shear Wall with Treatments of Connecting Reinforcement Defects in Grouted Sleeves under Combined Axial Tension and Cyclic Horizontal Load. J. Build. Eng. 2024, 97, 110941. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Z.; Wu, B.; Bursi, O.S.; Tan, X.; Yang, Q.; Wen, L. Seismic Performance of Precast Shear Wall with Sleeves Connection Based on Experimental and Numerical Studies. Eng. Struct. 2017, 150, 346–358. [Google Scholar] [CrossRef]
- Zheng, G.; Kuang, Z.; Xiao, J.; Pan, Z. Mechanical Performance for Defective and Repaired Grouted Sleeve Connections under Uniaxial and Cyclic Loadings. Constr. Build. Mater. 2020, 233, 117233. [Google Scholar] [CrossRef]
- Zhi, Q.; Guo, Z.; Xiao, Q.; Yuan, F.; Song, J. Quasi-Static Test and Strut-and-Tie Modeling of Precast Concrete Shear Walls with Grouted Lap-Spliced Connections. Constr. Build. Mater. 2017, 150, 190–203. [Google Scholar] [CrossRef]
- Xue, W.; Huang, Q.; Yang, J.; Li, Z. Cyclic Response of Precast Concrete Shear Walls with Reduced Grouted Sleeves or Corrugated Metallic Duct Splices. Case Stud. Constr. Mater. 2023, 18, e01822. [Google Scholar] [CrossRef]
- Zhao, J.; Dun, H. A Restoring Force Model for Steel Fiber Reinforced Concrete Shear Walls. Eng. Struct. 2014, 75, 469–476. [Google Scholar] [CrossRef]
- Wang, J.-T.; Wu, X.-H.; Yang, B.; Sun, Q. Bearing Capacity and Damage Behavior of HCFTST Columns under Cyclic Loading. Structures 2021, 32, 1492–1506. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Chen, Z.; Dong, S.; Deng, X.; Qian, K. Seismic Behavior of CFRP Confined Rectangular CFST Columns Using High-Strength Materials: Numerical Analysis and Restoring Force Model. Structures 2021, 34, 4237–4253. [Google Scholar] [CrossRef]
- Penzien, J. Dynamic Response of Elasto-Plastic Frames. J. Struct. Div. 1960, 86, 81–94. [Google Scholar] [CrossRef]
- Clough, R.W. Effect of Stiffness Degradation on Earthquake Ductility Requirements. In Proceedings of the Japan Earthquake Engineering Symposium, Berkeley, CA, USA, October 1966. [Google Scholar]
- Takeda, T. Reinforced Concrete Response to Simulated Earthquakes. J. Struct. Div. Proc. Am. Soc. Civ. Eng. 1970, 96, 2557–2573. [Google Scholar] [CrossRef]
- Zuo, Y.; Xu, Z.; Chen, Z.; Dai, S. Restoring-Force Model for HFC-Filled CFS Shear Walls Subjected to in-Plane Cyclic Loading. J. Build. Eng. 2021, 44, 103347. [Google Scholar] [CrossRef]
- Hu, S.; Zhou, L.; Cheng, H.; Liu, S. Restoring Force Model of Phosphogypsum-Filled Cold-Formed Thin-Walled Square Steel Tube Composite Wall. Structures 2024, 65, 106732. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, C.; Miao, J. Numerical and Theoretical Analysis of Seismic Behaviour of CFDSP Composite Shear Walls. J. Build. Eng. 2020, 31, 101359. [Google Scholar] [CrossRef]
- GB/T 51231-2016; Technical Standard for Assembled Buildings with Concrete Structure. China Architecture and Building Press: Beijing, China, 2016.
- GB 50010-2010; Code for Design of Concrete Structures. China Architecture and Building Press: Beijing, China, 2015.
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2019.
- GB/T 228.1-2021; Metallic Materials-Tensile Testing. Standards Press of China: Beijing, China, 2021.
- Li, Y.; Xue, W.; Yun, Y.; Ding, H. Reversed Cyclic Loading Tests on Precast Concrete Sandwich Shear Walls under Different Axial Compression Ratios. J. Build. Eng. 2022, 54, 104619. [Google Scholar] [CrossRef]
- Junfeng, C.; Xiaoyong, L.; Qian, C.; Minliang, X. Seismic Performance of Precast Concrete Walls with Grouted Sleeve Connections Using Large-Diameter Bars. Soil Dyn. Earthq. Eng. 2023, 169, 107905. [Google Scholar]
- Ling, J.H.; Rahman, A.B.A.; Ibrahim, I.S.; Hamid, Z.A. Tensile Capacity of Grouted Splice Sleeves. Eng. Struct. 2016, 111, 285–296. [Google Scholar] [CrossRef]
- Wu, C.L.; Liu, X.; Pan, W.; Mou, B. Restoring Force Model for Modular Prefabricated Steel-Reinforced Concrete Column to H-Shaped Steel Beam Composite Joints. J. Build. Eng. 2021, 42, 102845. [Google Scholar] [CrossRef]
- Peng, S.; Xiong, Z.; Zeng, X. A Restoring Force Model for CFRP Seismic-Damaged RACFST Columns: Theoretical, Experimental, and Simulation Analysis. Structures 2022, 40, 273–283. [Google Scholar] [CrossRef]
- Zhao, F.; Xiong, F.; Cai, G.; Ge, Q.; Si Larbi, A. Seismic Behavior and Simplified Hysteretic Model of Precast Concrete Wall Panels with Bolted Connections under Cyclic Loading. Eng. Struct. 2023, 292, 116562. [Google Scholar] [CrossRef]
- JGJ 3-2010; Technical Specification for Concrete Structures of Tall Building, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. China Building Industry Press: Beijing, China, 2010.
- Zhang, J.-W.; Zheng, W.-B.; Cao, W.-L.; Dong, H.-Y.; Li, W.-D. Seismic Behavior of Low-Rise Concrete Shear Wall with Single Layer of Web Reinforcement and Inclined Rebars: Restoring Force Model. KSCE J. Civ. Eng. 2019, 23, 1302–1319. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Z.; Zheng, Y.; Yao, L.; Cai, X.; Wu, G. Bond Behavior between Bundled Steel-FRP Composite Bars and Grouted Corrugated Duct. Eng. Struct. 2025, 322, 119029. [Google Scholar] [CrossRef]
Specimen | Category | Axial Compression Ratio | Connection Type | Connection Rows | ||
---|---|---|---|---|---|---|
Middle of the Wall | Boundary Element | Middle of the Wall | Boundary Element | |||
CIP | Cast-in-place | 0.1 | — | — | One row | Two rows |
PGCW1 | Precast | 0.1 | GCMD | GCMD | ||
PGSW1 | Precast | 0.1 | GCMD | GSS | ||
PGCW2 | Precast | 0.2 | GCMD | GCMD | ||
PGSW2 | Precast | 0.2 | GCMD | GSS |
Category | Strength Grade | fcu,k/MPa | fck/MPa | ftk/MPa | fc/MPa | ft/MPa |
---|---|---|---|---|---|---|
Precast concrete | C40 | 52.6 | 46.3 | 3.7 | 35.2 | 2.6 |
Post-poured concrete | C50 | 64.3 | 56.6 | 4.2 | 43 | 3.0 |
Categories | Standard Requirements | Measured Values | |
---|---|---|---|
Fluidity | Initial | ≥300 mm | 310 mm |
30 min | ≥260 mm | 293 mm | |
Compressive strength | 1 d | ≥35 MPa | 44.4 MPa |
3 d | ≥60 MPa | 63.2 MPa | |
28 d | ≥85 MPa | 96.4 MPa | |
Vertical expansion rate | 3 h | ≥0.02% | 0.08% |
Between 24 h and 3 h | 0.02%~0.50% | 0.04% | |
Chloride ion content | ≤0.03% | 0.018% | |
Hydrogenic | 0 | 0 |
Types | d/mm | A/mm2 | fy/MPa | fu/MPa | Elongation/% |
---|---|---|---|---|---|
HPB | 8 | 50 | 342.0 | 470.6 | 15.5 |
HRB | 10 | 78 | 443.6 | 617.3 | 19.9 |
12 | 113 | 441.3 | 622.4 | 19.1 | |
14 | 154 | 434.6 | 618.0 | 19.3 | |
16 | 201 | 432.8 | 601.8 | 20.4 | |
18 | 254 | 464.8 | 658.2 | 21.0 |
Specimens | Yield Point | Peak Point | Limit Point | ||||||
---|---|---|---|---|---|---|---|---|---|
Δy/mm | Py/kN | Ky(+) | Δm/mm | Pm/kN | Km(+) | Δu/mm | Pu/kN | Ku(-) | |
CIP | 10.50 | 498.22 | 47.4 | 40.00 | 611.80 | 15.3 | 65.40 | 515.16 | 7.9 |
−18.00 | −529.78 | 29.4 | −40.00 | −612.00 | 15.3 | −64.00 | −528.30 | 8.3 | |
PGCW1 | 9.84 | 486.61 | 49.5 | 32.00 | 605.40 | 18.9 | 50.00 | 514.98 | 10.3 |
−18.13 | −496.05 | 27.4 | −32.00 | −568.20 | 17.8 | −49.80 | −487.00 | 9.8 | |
PGSW1 | 10.97 | 536.62 | 48.9 | 24.00 | 635.80 | 26.5 | 39.61 | 541.91 | 13.7 |
−15.11 | −570.79 | 37.8 | −24.00 | −627.60 | 26.2 | −48.56 | −538.24 | 11.1 | |
PGCW2 | 14.72 | 738.06 | 50.1 | 32.00 | 861.50 | 26.9 | 42.59 | 731.78 | 17.2 |
−21.34 | −759.74 | 35.6 | −32.00 | −837.20 | 26.2 | −48.00 | −752.90 | 15.7 | |
PGSW2 | 10.60 | 752.71 | 71.0 | 24.00 | 889.68 | 37.1 | 35.16 | 755.53 | 21.5 |
−17.85 | −747.56 | 41.9 | −40.00 | −825.00 | 20.6 | −47.12 | −699.24 | 14.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Qin, Y.; Cheng, W.; Chen, Q. Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections. Buildings 2025, 15, 2178. https://doi.org/10.3390/buildings15132178
Han Y, Qin Y, Cheng W, Chen Q. Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections. Buildings. 2025; 15(13):2178. https://doi.org/10.3390/buildings15132178
Chicago/Turabian StyleHan, Yuqing, Yongjun Qin, Wentong Cheng, and Qi Chen. 2025. "Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections" Buildings 15, no. 13: 2178. https://doi.org/10.3390/buildings15132178
APA StyleHan, Y., Qin, Y., Cheng, W., & Chen, Q. (2025). Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections. Buildings, 15(13), 2178. https://doi.org/10.3390/buildings15132178