Reconstruction of Cultural Heritage in Virtual Space Following Disasters
Abstract
1. Introduction
- (1)
- A joint optimization framework combining NeRF-based 3D reconstruction and Stable Diffusion is constructed, enabling semantic-guided style transfer and fine-grained local detail refinement for architectural models.
- (2)
- VQ-VAE–based audio restoration is employed to embed synthesized ambient sound into the 3D virtual environment, offering users an immersive and personalized experience.
- (3)
- The system architecture supports dynamic parametric adjustment and incorporates a human–machine collaborative optimization framework based on semantic consistency constraints, providing an interactive design paradigm for the digital restoration of historical architecture.
- (4)
- Feedback collected through user testing and surveys among refugee participants confirms the effectiveness of the proposed approach in cultural memory translation and humanistic value reconstruction within a hybrid virtual–physical environment, offering a replicable reference for related research.
2. Theoretical Background
2.1. Restoration of Cultural Heritage
2.2. Application of Digital Technologies in Cultural Heritage
2.2.1. Texture Style Transfer and 3D Reconstruction
2.2.2. Detailed Modification of 3D Reconstruction
2.2.3. Audio Reproduction
2.3. Research Motivation and Objective
3. Methodology
3.1. Texture Style Transfer and 3D Reconstruction
3.1.1. Texture Style Transfer
3.1.2. Three-Dimensional Reconstruction
3.2. Detailed Modification of 3D Reconstruction
3.3. Audio Reproduction
3.4. User Interaction in Virtual Environments
4. Experiments
4.1. Virtual Space Construction
4.2. Data Collection and Preprocessing
4.3. Experimental Procedure
4.3.1. Texture Style Transfer and 3D Reconstruction
4.3.2. Detailed Modification of 3D Reconstruction
4.3.3. Audio Reproduction
4.4. Construction of Virtual Space
5. Discussion
5.1. Participants
5.2. Evaluation Procedure
5.3. Evaluation Instrument Scale Descriptions
5.3.1. IES-R Trauma Interview Assessment
5.3.2. System Usability Scale
5.4. Evaluation Results
6. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mediastika, C.E.; Sudarsono, A.S.; Utami, S.S.; Setiawan, T.; Mansell, J.G.; Santosa, R.B.; Wiratama, A.; Yanti, R.J.; Cliffe, L. The sound heritage of Kotagede: The evolving soundscape of a living museum. Built Herit. 2024, 8, 38. [Google Scholar] [CrossRef]
- Salman, R. Emotional Aspects of Cultural Heritage Destruction During War Conflicts. Master’s Thesis, Charles University, Prague, Czech Republic, 2023. [Google Scholar]
- Belal, A.; Shcherbina, E. Heritage in post-war period: Challenges and solutions. IFAC-PapersOnLine 2019, 52, 252–257. [Google Scholar] [CrossRef]
- Naser, S.R. Revealing the Collective Memory in the Digital Reconstruction of the Lost Cultural Heritage—Example of Al-Nuri Mosque in Mosul. Blue Shield Türkiye. 2024. Available online: https://theblueshield.org/wp-content/uploads/2024/03/BST-BSI-EFFECTS-OF-WAR-TRAUMA-ON-STUDENTS-FROM-WAR-AREAS_compressed.pdf#page=41 (accessed on 14 May 2025).
- Nazarenko, V.; Martyn, A. Geospatial technologies in post-war reconstruction: Challenges and innovations in Ukraine. Zemleustrìj Kadastr ì Monìtorìng Zemel’ 2024, 2024, 7. [Google Scholar] [CrossRef]
- Hutson, J.; Weber, J.; Russo, A. Best practices in digital twins for cultural heritage preservation. J. Cult. Herit. Manag. Sustain. Dev. 2022, 12, 47–62. [Google Scholar]
- Pietroni, E.; Ferdani, D. Virtual restoration and virtual reconstruction in cultural heritage: Terminology, methodologies, visual representation techniques and cognitive models. Information 2021, 12, 167. [Google Scholar] [CrossRef]
- Abukarki, H.J. Beyond preservation: A survey of the role of virtual reality in experiencing and understanding historical architectural spaces. Buildings 2025, 15, 1531. [Google Scholar] [CrossRef]
- Haux, D.H.; Dominicé, A.M.; Raspotnig, J.A. A cultural memory of the digital age? Int. J. Semiot. Law-Rev. Int. Sémiot. Jurid. 2021, 34, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, K. e-Heritage, cyber archaeology, and cloud museum. In Proceedings of the 2013 International Conference on Culture and Computing, Kyoto, Japan, 16–18 September 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Neglia, G.; Angrisano, M.; Mecca, I.; Fabbrocino, F. Cultural heritage at risk in world conflicts: Digital tools’ contribution to its preservation. Heritage 2024, 7, 6343–6365. [Google Scholar] [CrossRef]
- Reading, A. Memory and digital media: Six dynamics of the globital memory field. In On Media Memory: Collective Memory in a New Media Age; Zelizer, B., Tenenboim-Weinblatt, K., Eds.; Palgrave Macmillan: London, UK, 2011; pp. 241–252. [Google Scholar]
- Pereira, E.; Raulin, A.; Menezes, R.; Pereira, E.; de Souza Pinto, D.; Pinheiro, T.M.; Loir-Mongazon, E.; Girard, G.; Goacolou, E.; Fonseca, V.L. Mourning, reconstruction, and the future after heritage catastrophes: A comparative social science perspective agenda. J. Cult. Herit. 2023, 65, 199–205. [Google Scholar] [CrossRef]
- Georgieva, I.; Georgiev, G.V. Reconstructing personal stories in virtual reality as a mechanism to recover the self. Int. J. Environ. Res. Public Health 2020, 17, 26. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, Z.; Yuan, J. Research on the design and image perception of cultural landscapes based on digital roaming technology. Herit. Sci. 2024, 12, 397. [Google Scholar] [CrossRef]
- Liao, J.; Yao, Y.; Yuan, L.; Hua, G.; Kang, S.B. Visual attribute transfer through deep image analogy. ACM Trans. Graph. (TOG) 2017, 36, 120:1–120:15. [Google Scholar] [CrossRef]
- Kerdreux, T.; Thiry, L.; Kerdreux, E. Interactive neural style transfer with artists. In Proceedings of the 11th International Conference on Computational Creativity (ICCC), Lisbon, Portugal, 7–11 September 2020; pp. 123–130. [Google Scholar] [CrossRef]
- An, J.; Huang, S.; Song, Y.; Dou, D.; Liu, W.; Luo, J. ArtFlow: Unbiased image style transfer via reversible neural flows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 862–871. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Lei, J.; Zhang, Y.; Jia, K. TANGO: Text-driven photorealistic and robust 3D stylization via lighting decomposition. Adv. Neural Inf. Process. Syst. 2022, 35, 30923–30936. [Google Scholar] [CrossRef]
- Liu, K.; Zhan, F.; Xu, M.; Theobalt, C.; Shao, L.; You, S. StyleGaussian: Instant 3D style transfer with Gaussian splatting. In Proceedings of the SIGGRAPH Asia 2024 Technical Communications, Tokyo, Japan, 3–6 December 2024. [Google Scholar] [CrossRef]
- Amico, N.; Felicetti, A. Ontological entities for planning and describing cultural heritage 3D models creation. In Proceedings of the 18th International Conference on Digital Preservation (iPRES), Beijing, China, 19–22 October 2021; pp. 345–352. [Google Scholar] [CrossRef]
- Zachos, A.; Anagnostopoulos, C.-N. Using TLS, UAV, and MR methodologies for 3D modelling and historical recreation of religious heritage monuments. ACM J. Comput. Appl. Archaeol. 2024, 17, 56:1–56:23. [Google Scholar] [CrossRef]
- Altaweel, M.; Khelifi, A.; Zafar, M.H. Using generative AI for reconstructing cultural artifacts: Examples using Roman coins. J. Comput. Appl. Archaeol. 2024, 7, 1–15. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Tun, A.N.; Sein, K. Research on identification, evaluation, and digitization of historical buildings based on deep learning algorithms: A case study of Quanzhou World Cultural Heritage Site. Buildings 2025, 15, 1843. [Google Scholar] [CrossRef]
- Fang, W.; Li, H.; Zhang, Y. A GAN-based approach for 3D point cloud completion in cultural heritage preservation. Remote Sens. 2024, 16, 5542. [Google Scholar]
- Song, H.; Choi, S.; Do, H.; Lee, C.; Kim, T.-K. Blending-NeRF: Text-driven localized editing in neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 14383–14393. [Google Scholar] [CrossRef]
- Ye, X.; Wang, J.; Liu, Z. Point cloud transfer for UV mapping in low-poly 3D models. Sensors 2022, 22, 7718. [Google Scholar]
- Song, H.; Kim, J.; Lee, S.-H. Multi-view attention-based 3D local structure fusion for cultural heritage reconstruction. Appl. Sci. 2024, 14, 3230. [Google Scholar]
- Pang, H.-W.; Hua, B.-S.; Yeung, S.-K. Locally stylized neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 12345–12354. [Google Scholar] [CrossRef]
- Zhang, L.; Rao, A.; Agrawala, M. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 3813–3824. [Google Scholar] [CrossRef]
- Magalhães, M.; Melo, M.; Coelho, A.F.; Bessa, M. Affective landscapes: Navigating the emotional impact of multisensory stimuli in virtual reality. IEEE Access 2024, 12, 169955–169972. [Google Scholar] [CrossRef]
- Gozzi, A.; Grazioli, G. Listen to the theatre! Exploring Florentine performative spaces. In Proceedings of the 2023 Immersive and 3D Audio: From Architecture to Automotive (I3DA), Bologna, Italy, 5–7 September 2023. [Google Scholar] [CrossRef]
- Kritikos, Y.; Giariskanis, F.; Protopapadaki, E.; Papanastasiou, A.; Papadopoulou, E.; Mania, K. Audio augmented reality for cultural heritage outdoors. In Proceedings of the EUROGRAPHICS Workshop on Graphics and Cultural Heritage (Short Papers), Delft, The Netherlands, 28–30 September 2022; pp. 37–40. [Google Scholar] [CrossRef]
- Zou, C.; Rhee, S.-Y.; He, L.; Chen, D.; Yang, X. Sounds of history: A digital twin approach to musical heritage preservation in virtual museums. Electronics 2024, 13, 2388. [Google Scholar] [CrossRef]
- Chen, J.; Mao, Q.; Liu, D. Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation. In Proceedings of the Interspeech 2020, Shanghai, China, 25–29 October 2020; pp. 2642–2646. [Google Scholar] [CrossRef]
- Yang, H.; Su, J.; Kim, M.; Jin, Z. Genhancer: High-fidelity speech enhancement via generative modeling on discrete codec tokens. In Proceedings of the Interspeech 2024, Dublin, Ireland, 1–5 September 2024; pp. 1170–1174. [Google Scholar] [CrossRef]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar] [CrossRef]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef]
- WanTeam; Wang, A.; Ai, B.; Wen, B.; Mao, C.; Xie, W.-C.; Chen, D.; Yu, F.; Zhao, H.; Yang, J.; et al. Wan: Open and Advanced Large-Scale Video Generative Models. 2025. Available online: https://arxiv.org/abs/2503.20314 (accessed on 14 May 2025).
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-rank adaptation of large language models. In Proceedings of the 10th International Conference on Learning Representations (ICLR), Virtual Conference, 25–29 April 2022. [Google Scholar] [CrossRef]
- Peebles, W.; Xie, S. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 387–397. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing scenes as neural radiance fields for view synthesis. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 405–421. [Google Scholar]
- Schönberger, J.L.; Frahm, J.-M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. MVSNet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 767–783. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, A.; Luo, H.; Wu, M.; Su, H.; Xu, L.; He, X.; Yu, J. GNeRF: GAN-based neural radiance field without posed camera. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 6351–6360. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-nested edge detection [Conference presentation]. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Engel, J.H.; Hannun, A. Learning multiscale features directly from waveforms. In Proceedings of the Interspeech 2016, San Francisco, CA, USA, 8–12 September 2016; pp. 1305–1309. [Google Scholar] [CrossRef]
- van den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural discrete representation learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Dhariwal, P.; Jun, H.; Payne, C.; Kim, J.W.; Radford, A.; Sutskever, I. Jukebox: A Generative Model for Music. 2020. Available online: https://arxiv.org/abs/2005.00341 (accessed on 14 May 2025).
- Bregman, A.S. Auditory Scene Analysis: The Perceptual Organization of Sound; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Kong, J.; Kim, J.; Bae, J. HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; pp. 17022–17033. [Google Scholar] [CrossRef]
- Unity Technologies. Unity Manual: Unity User Manual. 2021. Available online: https://docs.unity3d.com/Manual/index.html (accessed on 14 May 2025).
- McAuley, S.; Hill, S.; Hoffman, N.; Gotanda, Y.; Burley, B.; Martinez, A. Practical physically-based shading in film and game production. In Proceedings of the ACM SIGGRAPH 2012 Courses, Los Angeles, CA, USA, 5–9 August 2012. [Google Scholar] [CrossRef]
- Unity Technologies. Universal Render Pipeline Overview. 2021. Available online: https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.2/manual/index.html (accessed on 14 May 2025).
- Huang, H.; Jie, P. Research on the characteristics of high-temperature heat waves and outdoor thermal comfort: A typical space in Chongqing Yuzhong District as an example. Buildings 2022, 12, 625. [Google Scholar] [CrossRef]
- Wang, D.; Shu, H. Accuracy analysis of three-dimensional modeling of a multi-level UAV without control points. Buildings 2022, 12, 592. [Google Scholar] [CrossRef]
- Beck, J.G.; Grant, D.M.; Read, J.P.; Clapp, J.D.; Coffey, S.F.; Miller, L.M.; Palyo, S.A. The Impact of Event Scale–Revised: Psychometric properties in a sample of motor vehicle accident survivors. J. Anxiety Disord. 2008, 22, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Creamer, M.; Bell, R.; Failla, S. Psychometric properties of the Impact of Event Scale–Revised. Behav. Res. Ther. 2003, 41, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.R. The system usability scale: Past, present, and future. Int. J. Hum.–Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Liu, X.; Nikkhoo, M.; Wang, L.; Chen, C.P.C.; Chen, H.-B.; Chen, C.-J.; Cheng, C.-H. Feasibility of a kinect-based system in assessing physical function of the elderly for home-based care. BMC Geriatr. 2023, 23, 495. [Google Scholar] [CrossRef]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 140, 1–55. [Google Scholar]
- Linares-Vargas, B.G.P.; Cieza-Mostacero, S.E. Interactive virtual reality environments and emotions: A systematic review. Virtual Real. 2025, 29, 3. [Google Scholar] [CrossRef]
- Love, A.W. Progress in understanding grief, complicated grief, and caring for the bereaved. Contemp. Nurse 2007, 27, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Segal, R.M. Helping children express grief through symbolic communication. Soc. Casework 1984, 65, 590–599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Tong, Y.; Wu, Y.; Wu, Y.; Liu, Z.; Huang, J. Reconstruction of Cultural Heritage in Virtual Space Following Disasters. Buildings 2025, 15, 2040. https://doi.org/10.3390/buildings15122040
Chen G, Tong Y, Wu Y, Wu Y, Liu Z, Huang J. Reconstruction of Cultural Heritage in Virtual Space Following Disasters. Buildings. 2025; 15(12):2040. https://doi.org/10.3390/buildings15122040
Chicago/Turabian StyleChen, Guanlin, Yiyang Tong, Yuwei Wu, Yongjin Wu, Zesheng Liu, and Jianwen Huang. 2025. "Reconstruction of Cultural Heritage in Virtual Space Following Disasters" Buildings 15, no. 12: 2040. https://doi.org/10.3390/buildings15122040
APA StyleChen, G., Tong, Y., Wu, Y., Wu, Y., Liu, Z., & Huang, J. (2025). Reconstruction of Cultural Heritage in Virtual Space Following Disasters. Buildings, 15(12), 2040. https://doi.org/10.3390/buildings15122040