Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps
Abstract
1. Introduction
2. Literature Searching and Review Method
2.1. The Literature Retrieved
2.2. Bibliometric Tool
2.3. The Process of Manual Review
3. Results of Bibliometric Analysis
3.1. Trends in Publishing
3.2. Contribution and Collaboration
3.3. Research Trend and Frontier
3.4. Research Hotspot
4. Manual Review
4.1. Research Scales and Objects
- (1)
- National scale
- (2)
- Regional scale
- (3)
- City scale
- (4)
- Building scale
4.2. Accounting Boundaries and Methods
5. Future Research in CECI
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
C | Construction |
CECI | Carbon Emissions from the Construction Industry |
C&M | Construction & Materials |
C, M&O | Construction, Materials & Operation |
M | Materials |
MTCB | Multiple Types of Civil Buildings |
M&W | Materials & Waste |
O | Operation |
SCI-E | Science Citation Index Expanded |
SSCI | Social Sciences Citation Index |
STCB | Single Type of Civil Buildings |
W | Waste |
WCI | the whole construction industry |
Appendix A
No. | Search Term |
---|---|
#1 | TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) |
#2 | TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) |
#3 | TS = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#4 | TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#5 | KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#6 | TS = ((“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) |
#7 | TS = ((“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) |
#8 | TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#9 | TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#10 | TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#11 | TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) |
#12 | ((TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) OR (TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”))) |
#13 | ((TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) OR (TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”))) |
#14 | (((TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) OR (TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”))) OR ((TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)) OR (TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) AND KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”)))) |
References
- Fetanat, A. Water-energy-carbon nexus and sustainability-oriented prioritization of negative emissions technologies for the oil & gas industry: A decision support system under Fermatean fuzzy environment. Process Saf. Environ. Prot. 2023, 179, 462–483. [Google Scholar]
- United Nations Environment Programme. 2023 Global Status Report for Buildings and Construction: Beyond Foundations—Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme: Nairobi, Kenya, 2024; ISBN 978-92-807-4131-5. [Google Scholar]
- Sahoo, N.; Kumar, A. Samsher Potential of solar thermal calciner technology for cement production in India and consequent carbon mitigation. Process Saf. Environ. Prot. 2023, 179, 667–676. [Google Scholar] [CrossRef]
- Hu, J.; Yao, W.; Cai, G.; Zhao, Q.; Wang, C.; Xu, T.; Shi, C.; Gao, W. Metropolitan construction carbon emission efficiency: An integrative static-dynamic analytical framework. Environ. Res. Commun. 2025, 7, 011002. [Google Scholar] [CrossRef]
- Teamah, H.M. Potential retrofits in office buildings located in harsh Northern climate for better energy efficiency, cost effectiveness, and environmental impact. Process Saf. Environ. Prot. 2022, 3, 100126. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, B.; Lu, W.; Peng, Z. Carbon footprint accounting across the construction waste lifecycle: A critical review of research. Environ. Impact Assess. Rev. 2024, 107, 107551. [Google Scholar] [CrossRef]
- Mostafaei, H.; Rostampour, M.A.; Chamasemani, N.F.; Wu, C. An In-depth Exploration of Carbon Footprint Analysis in the Construction Sector with Emphasis on the Dam Industry. In Carbon Footprint Assessments: Case Studies & Best Practices; Muthu, S.S., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 45–80. ISBN 978-3-031-70262-4. [Google Scholar]
- Wang, T.; Zhao, Q.; Gao, W.; He, X. Research on Energy Consumption in Household Sector: A Comprehensive Review based on Bibliometric Analysis. Front. Energy Res. 2024, 11, 1209290. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Wen, J.; Wang, H.; Feng, Y.; Lu, J.; Chen, H.; Wu, J.; Wang, J. Drivers of China’s carbon dioxide emissions: Based on the combination model of structural decomposition analysis and input-output subsystem method. Environ. Impact Assess. Rev. 2023, 100, 107043. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.Z.; Shen, G.Q.; Teng, Y.; Wu, H.; Liu, R. Managing carbon emissions in construction: Current status and emerging trends. Renew. Sustain. Energy Rev. 2025, 211, 115237. [Google Scholar] [CrossRef]
- Dakwale, V.A.; Ralegaonkar, R.V. Review of carbon emission through buildings: Threats, causes and solution: Table 1. Int. J. Low-Carbon Technol. 2012, 7, 143–148. [Google Scholar] [CrossRef]
- Felipe Arbeláez Pérez, O.; Senior Arrieta, V.; Hernán Gómez Ospina, J.; Herrera Herrera, S.; Ferney Rodríguez Rojas, C.; María Santis Navarro, A. Carbon dioxide emissions from traditional and modified concrete. A review. Environ. Dev. 2024, 52, 101036. [Google Scholar] [CrossRef]
- Al Khaffaf, I.; Hawileh, R.A.; Sahoo, S.; Abdalla, J.A.; Kim, J.H. Toward carbon- neutral construction: A review of zero-carbon concrete. J. Build. Eng. 2025, 99, 111578. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, D.; Koner, S.; Hseu, Z.-Y.; Hsu, B.-M. Microbial induce carbonate precipitation derive bio-concrete formation: A sustainable solution for carbon sequestration and eco-friendly construction. Environ. Res. 2025, 270, 121006. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, P.; Wang, F.; Osmani, M.; Demian, P. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12820. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Li, K.; Pan, W.; Ng, T. Reducing building life cycle carbon emissions through prefabrication: Evidence from and gaps in empirical studies. Build. Environ. 2018, 132, 125–136. [Google Scholar] [CrossRef]
- Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO2 emissions of residential buildings. Build. Environ. 2018, 130, 212–226. [Google Scholar] [CrossRef]
- Atmaca, A.; Atmaca, N. Carbon footprint assessment of residential buildings, a review and a case study in Turkey. J. Clean. Prod. 2022, 340, 130691. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, H.; Xu, X.; Xiahou, X.; Cui, P.; Mao, P. Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review. Buildings 2023, 13, 677. [Google Scholar] [CrossRef]
- Lai, K.E.; Abdul Rahiman, N.; Othman, N.; Ali, K.N.; Lim, Y.W.; Moayedi, F.; Mat Dzahir, M.A. Quantification process of carbon emissions in the construction industry. Energy Build. 2023, 289, 113025. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Li, L.; Qi, Y.; Sun, J.; Jiang, Z. A Bibliometric and Content Review of Carbon Emission Analysis for Building Construction. Buildings 2023, 13, 205. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T. Carbon emissions trajectory and driving force from the construction industry with a city-scale: A case study of Hangzhou, China. Sustain. Cities Soc. 2023, 88, 104283. [Google Scholar] [CrossRef]
- Luo, T.; Tan, Y.; Langston, C.; Xue, X. Mapping the knowledge roadmap of low carbon building: A scientometric analysis. Energy Build. 2019, 194, 163–176. [Google Scholar] [CrossRef]
- Lu, Y.; Cui, P.; Li, D. Carbon emissions and policies in China’s building and construction industry: Evidence from 1994 to 2012. Build. Environ. 2016, 95, 94–103. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Tan, X.; Lai, H.; Gu, B.; Zeng, Y.; Li, H. Carbon emission and abatement potential outlook in China’s building sector through 2050. Energy Policy 2018, 118, 429–439. [Google Scholar] [CrossRef]
- Zhou, N.; Khanna, N.; Feng, W.; Ke, J.; Levine, M. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat. Energy 2018, 3, 978–984. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. CO2 mitigation potential in China’s building construction industry: A comparison of energy performance. Build. Environ. 2015, 94, 239–251. [Google Scholar] [CrossRef]
- Chen, J.; Shen, L.; Song, X.; Shi, Q.; Li, S. An empirical study on the CO2 emissions in the Chinese construction industry. J. Clean. Prod. 2017, 168, 645–654. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Guo, S.; Xue, F.; Zheng, W. Energy use embodied in China’s construction industry: A multi-regional input-output analysis. Renew. Sustain. ENERGY Rev. 2016, 53, 1303–1312. [Google Scholar] [CrossRef]
- Wu, Y.; Chau, K.W.; Lu, W.; Shen, L.; Shuai, C.; Chen, J. Decoupling relationship between economic output and carbon emission in the Chinese construction industry. Environ. IMPACT Assess. Rev. 2018, 71, 60–69. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Zhu, J.; Chang, R. Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Li, R.; Yu, Y.; Cai, W.; Liu, Q.; Liu, Y.; Zhou, H. Interprovincial differences in the historical peak situation of building carbon emissions in China: Causes and enlightenments. J. Environ. Manag. 2023, 332, 117347. [Google Scholar] [CrossRef]
- Koomey, J.; Martin, N.; Brown, M.; Price, L.; Levine, M. Costs of reducing carbon emissions: US building sector scenarios. Energy Policy 1998, 26, 433–440. [Google Scholar] [CrossRef]
- Sun, L. Energy scheduling of a fuel cell based residential cogeneration system using stochastic dynamic programming. Process Saf. Environ. Prot. 2023, 175, 272–279. [Google Scholar] [CrossRef]
- Kesicki, F. Costs and potentials of reducing CO2 emissions in the UK domestic stock from a systems perspective. Energy Build. 2012, 51, 203–211. [Google Scholar] [CrossRef]
- Oberheitmann, A. CO2-emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020. Mitig. Adapt. Strateg. Glob. Change 2012, 17, 769–791. [Google Scholar] [CrossRef]
- Ma, M.; Ma, X.; Cai, W.; Cai, W. Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak. Appl. Energy 2020, 273. [Google Scholar] [CrossRef]
- Pavkovic, B.; Zanki, V.; Cacic, G. Energy Efficiency in Building Sector in Croatia—Preliminary Energy Studies. Strojarstvo 2010, 52, 681–694. [Google Scholar]
- Ma, M.; Yan, R.; Cai, W. An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: Evidence from China in 2000–2015. Nat. Hazards 2017, 89, 741–756. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W.; Cai, W. Carbon abatement in China’s commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods. Energy 2018, 165, 350–368. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity. Sci. Total Environ. 2018, 634, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Ma, X.; Ma, Z.; Ma, M.; Cai, W. Python-LMDI: A Tool for Index Decomposition Analysis of Building Carbon Emissions. Buildings 2022, 12, 83. [Google Scholar] [CrossRef]
- Eriksson, L.O.; Gustavsson, L.; Hanninen, R.; Kallio, M.; Lyhykainen, H.; Pingoud, K.; Pohjola, J.; Sathre, R.; Solberg, B.; Svanaes, J.; et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Eur. J. For. Res. 2012, 131, 131–144. [Google Scholar] [CrossRef]
- Noailly, J.; Batrakova, S. Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons. Energy Policy 2010, 38, 7803–7817. [Google Scholar] [CrossRef]
- Kucukvar, M.; Tatari, O. Towards a triple bottom-line sustainability assessment of the U.S. construction industry. Int. J. Life Cycle Assess. 2013, 18, 958–972. [Google Scholar] [CrossRef]
- Cheng, M.; Lu, Y.; Zhu, H.; Xiao, J. Measuring CO2 emissions performance of China’s construction industry: A global Malmquist index analysis. Environ. Impact Assess. Rev. 2022, 92, 106673. [Google Scholar] [CrossRef]
- Gholipour, H.F.; Arjomandi, A.; Yam, S. Green property finance and CO2 emissions in the building industry. Glob. Finance J. 2022, 51. [Google Scholar] [CrossRef]
- Alcantara, V.; Padilla, E. CO2 emissions of the construction sector in Spain during the real estate boom: Input-output subsystem analysis and decomposition. J. Ind. Ecol. 2021, 25, 1272–1283. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.; Li, H.; Wang, S. Internationalization trends of carbon emission linkages: A case study on the construction sector. J. Clean. Prod. 2020, 270, 122433. [Google Scholar] [CrossRef]
- Johansson, P.; Nylander, A.; Johnsson, F. Electricity dependency and CO2 emissions from heating in the Swedish building sector—Current trends in conflict with governmental policy? Energy Policy 2006, 34, 3049–3064. [Google Scholar] [CrossRef]
- Johansson, P.; Nylander, A.; Johnsson, F. Primary energy use for heating in the Swedish building sector—Current trends and proposed target. Energy Policy 2007, 35, 1386–1404. [Google Scholar] [CrossRef]
- Kahn, M.E.; Kok, N.; Quigley, J.M. Carbon emissions from the commercial building sector: The role of climate, quality, and incentives. J. Public Econ. 2014, 113, 1–12. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W.; Cai, W.; Dong, L. Whether carbon intensity in the commercial building sector decouples from economic development in the service industry? Empirical evidence from the top five urban agglomerations in China. J. Clean. Prod. 2019, 222, 193–205. [Google Scholar] [CrossRef]
- Ma, M.; Feng, W.; Huo, J.; Xiang, X. Operational carbon transition in the megalopolises’ commercial buildings. Build. Environ. 2022, 226, 109705. [Google Scholar] [CrossRef]
- Hu, X.; Si, T.; Liu, C. Total factor carbon emission performance measurement and development. J. Clean. Prod. 2017, 142, 2804–2815. [Google Scholar] [CrossRef]
- Li, D.; Huang, G.; Zhu, S.; Chen, L.; Wang, J. How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province. Renew. Sustain. Energy Rev. 2021, 144, 110953. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Y.; Hong, J.; Chen, Y.; Ni, D.; Shen, Q. Spillover effect of technological innovation on CO2 emissions in China’s construction industry. Build. Environ. 2020, 171, 106653. [Google Scholar] [CrossRef]
- Cai, W. (Ed.) Chinese Building Energy Consumption Report; CABEE: Beijing, China, 2016. [Google Scholar]
- Wang, T.; Zhao, Q.; Gao, W.; He, X. Subdividing end-use energy consumption based on household characteristics and climate conditions: Insights from urban China. Front. Energy Res. 2023, 11, 1267975. [Google Scholar] [CrossRef]
- Hung, C.C.W.; Hsu, S.-C.; Cheng, K.-L. Quantifying city-scale carbon emissions of the construction sector based on multi-regional input-output analysis. Resour. Conserv. Recycl. 2019, 149, 75–85. [Google Scholar] [CrossRef]
- Kamei, M.; Kurisu, K.; Hanaki, K. Evaluation of long-term urban transitions in a megacity’s building sector based on alternative socioeconomic pathways. Sustain. Cities Soc. 2019, 47, 101366. [Google Scholar] [CrossRef]
- Balali, A.; Hakimelahi, A.; Valipour, A. Identification and prioritization of passive energy consumption optimization measures in the building industry: An Iranian case study. J. Build. Eng. 2020, 30, 101239. [Google Scholar] [CrossRef]
- Mastrucci, A.; Marvuglia, A.; Benetto, E.; Leopold, U. A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale. Renew. Sustain. Energy Rev. 2020, 126, 109834. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W. Carbon mitigation of China’s building sector on city-level: Pathway and policy implications by a low-carbon province case study. J. Clean. Prod. 2019, 224, 207–217. [Google Scholar] [CrossRef]
- Cellura, M.; Guarino, F.; Longo, S.; Tumminia, G. Climate change and the building sector: Modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 2018, 45, 46–65. [Google Scholar] [CrossRef]
- Atmaca, N. Life-cycle assessment of post-disaster temporary housing. Build. Res. Inf. 2017, 45, 524–538. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Krigsvoll, G.; Johansen, F. Life cycle assessment and life cycle cost of university dormitories in the southeast China: Case study of the university town of Fuzhou. J. Clean. Prod. 2018, 173, 151–159. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, X.; Qi, H.; Qian, F. Low-carbon city planning based on collaborative analysis of supply and demand scenarios. City Built Environ. 2023, 1, 7. [Google Scholar] [CrossRef]
- Zhou, H.; Tian, X.; Zhao, Y.; Chang, C.; Lin, B. Investigation of policy tools for energy efficiency improvement in public buildings in China—Current situation, obstacles, and solutions. City Built Environ. 2024, 2, 2. [Google Scholar] [CrossRef]
- Wang, G.; Luo, T.; Luo, H.; Liu, R.; Liu, Y.; Liu, Z. A comprehensive review of building lifecycle carbon emissions and reduction approaches. City Built Environ. 2024, 2, 12. [Google Scholar] [CrossRef]
- Satre-Meloy, A.; Langevin, J. Assessing the time-sensitive impacts of energy efficiency and flexibility in the US building sector. Environ. Res. Lett. 2019, 14, 124012. [Google Scholar] [CrossRef]
- Tang, B.; Zou, Y.; Yu, B.; Guo, Y.; Zhao, G. Clean heating transition in the building sector: The case of Northern China. J. Clean. Prod. 2021, 307, 127206. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Masui, T. Deep decarbonization pathways in the building sector: China’s NDC and the Paris agreement. Environ. Res. Lett. 2021, 16, 44054. [Google Scholar] [CrossRef]
- Heravi, G.; Rostami, M.; Kebria, M.F. Energy consumption and carbon emissions assessment of integrated production and erection of buildings’ pre-fabricated steel frames using lean techniques. J. Clean. Prod. 2020, 253, 120045. [Google Scholar] [CrossRef]
- Li, L.; Chen, K. Quantitative assessment of carbon dioxide emissions in construction projects: A case study in Shenzhen. J. Clean. Prod. 2017, 141, 394–408. [Google Scholar] [CrossRef]
- Zhu, C.; Li, X.; Zhu, W.; Gong, W. Embodied carbon emissions and mitigation potential in China’s building sector: An outlook to 2060. Energy Policy 2022, 170, 113222. [Google Scholar] [CrossRef]
- Yan, S.; Chen, W. Analysis of the decoupling state and driving forces of China’s construction industry under the carbon neutrality target. Environ. Sci. Pollut. Res. 2022, 29, 78457–78471. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, J.; Pan, T.; Sun, Q.; Wu, M. Relationship of carbon emissions and economic growth in China’s construction industry. J. Clean. Prod. 2019, 220, 99–109. [Google Scholar] [CrossRef]
- Evangelista, P.P.A.; Kiperstok, A.; Torres, E.A.; Goncalves, J.P. Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Constr. Build. Mater. 2018, 169, 748–761. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, P.; Hossain, M.U.; Fang, Y.; He, Y.; Li, H. An Index of Completeness (IoC) of life cycle assessment: Implementation in the building sector. J. Clean. Prod. 2021, 283, 124672. [Google Scholar] [CrossRef]
- Shui, B.; Luo, X.; Huang, G. Greenhouse gas emissions benefits of the lightweight vehicle fleet in China: A dynamic fleet perspective. Resour. Conserv. Recycl. 2024, 205, 107544. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F. Hybrid input-output analysis for life-cycle energy consumption and carbon emissions of China’s building sector. Build. Environ. 2016, 104, 188–197. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T.; Wang, J. How can C&D waste recycling do a carbon emission contribution for construction industry in Japan city? Energy Build. 2023, 298, 113538. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Duan, H.; Zillante, G.; Zuo, J.; Yuan, H. Combining life cycle assessment and Building Information Modelling to account for carbon emission of building demolition waste: A case study. J. Clean. Prod. 2018, 172, 3154–3166. [Google Scholar] [CrossRef]
- Coelho, A.; de Brito, J. Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manag. 2012, 32, 532–541. [Google Scholar] [CrossRef]
- Bertin, I.; Saade, M.; Le Roy, R.; Jaeger, J.-M.; Feraille, A. Environmental impacts of Design for Reuse practices in the building sector. J. Clean. Prod. 2022, 349, 131228. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Zhang, C.; Steubing, B. Urban mining potential to reduce primary material use and carbon emissions in the Dutch residential building sector. Resour. Conserv. Recycl. 2022, 180, 106215. [Google Scholar] [CrossRef]
- Ahmad, M.; Jabeen, G.; Hayat, M.K.; Khan, R.E.A.; Qamar, S. Revealing heterogeneous causal links among financial development, construction industry, energy use, and environmental quality across development levels. Environ. Sci. Pollut. Res. 2020, 27, 4976–4996. [Google Scholar] [CrossRef]
- Saynajoki, A.; Heinonen, J.; Junnila, S.; Horvath, A. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 2017, 12, 013001. [Google Scholar] [CrossRef]
- UN Department of Economic and Social Affairs. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. 21 June 2017. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 25 May 2025).
- Li, D.; Shang, X.; Huang, G.; Zhou, S.; Zhang, M.; Feng, H. Can Smart City Construction Enhance Citizens’ Perception of Safety? A Case Study of Nanjing, China. Soc. Indic. Res. 2024, 171, 937–965. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Yu, L.; Yang, D.; Wang, Y. Factors affecting sustainability of smart city services in China: From the perspective of citizens’ sense of gain. Habitat Int. 2022, 128, 102645. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Ng, S.T.; Wang, L.; Wang, T. A methodology for assessing supply-demand matching of smart government services from citizens’ perspective: A case study in Nanjing, China. Habitat Int. 2023, 138, 102880. [Google Scholar] [CrossRef]
- United Nations. Cities and Pollution. [Online]. Available online: https://www.un.org/en/climatechange/climate-solutions/cities-pollution (accessed on 25 May 2025).
- Xing, Z.; Jiao, Z.; Wang, H. Carbon footprint and embodied carbon transfer at city level: A nested MRIO analysis of Central Plain urban agglomeration in China. Sustain. Cities Soc. 2022, 83, 103977. [Google Scholar] [CrossRef]
- NDRC. Implementation Plan for the China-Singapore Tianjin Eco-City National Green Development Demonstration Zone (2024–2035). August 2024. Available online: https://www.gov.cn/zhengce/zhengceku/202408/content_6971015.htm (accessed on 25 May 2025).
- China News Network. The Annual Emission Reduction of About 100,000 tons of Carbon Dioxide in the Sino-Singapore Tianjin Eco-City Has Further Increased the Proportion of Green Electricity. Available online: https://www.tj.chinanews.com.cn/bhxq/2024-10-11/detail-ihehwccy6197462.shtml (accessed on 25 May 2025).
- Nassen, J.; Holmberg, J. On the potential trade-offs between energy supply and end-use technologies for residential heating. Energy Policy 2013, 59, 470–480. [Google Scholar] [CrossRef]
- Liang, Y.; Cai, W.; Ma, M. Carbon dioxide intensity and income level in the Chinese megacities’ residential building sector: Decomposition and decoupling analyses. Sci. Total Environ. 2019, 677, 315–327. [Google Scholar] [CrossRef]
- Huo, T.; Xu, L.; Feng, W.; Cai, W.; Liu, B. Dynamic scenario simulations of carbon emission peak in China’s city-scale urban residential building sector through 2050. Energy Policy 2021, 159, 112612. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, Z.; Ma, M.; Cai, W.; Xiang, X.; Zhang, S.; Chen, M.; Chen, L. Carbon Peak and Carbon Neutrality in the Building Sector: A Bibliometric Review. Buildings 2022, 12, 128. [Google Scholar] [CrossRef]
- Su, Y.; Miao, Z.; Wang, L.; Wang, L. Energy consumption and indoor environment evaluation of large irregular commercial green building in Dalian, China. Energy Build. 2022, 276, 112506. [Google Scholar] [CrossRef]
- Hu, J.; He, Y.; Hao, X.; Li, N.; Su, Y.; Qu, H. Optimal temperature ranges considering gender differences in thermal comfort, work performance, and sick building syndrome: A winter field study in university classrooms. Energy Build. 2022, 254, 111554. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, B. Assessing and interpreting carbon market efficiency based on an interpretable machine learning. Process Saf. Environ. Prot. 2023, 179, 822–834. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, B. Research on the life-cycle CO2 emission of China’s construction sector. Energy Build. 2016, 112, 244–255. [Google Scholar] [CrossRef]
- Can, C.; Zhen, W.; Guoshu, B. Life-cycle CO2 Emissions and Their Driving Factors in Construction Sector in China. Chin. Geogr. Sci. 2019, 29, 293–305. [Google Scholar] [CrossRef]
- Mor, S. Municipal solid waste landfills in lower- and middle-income countries: Environmental impacts, challenges and sustainable management practices. Process Saf. Environ. Prot. 2023, 174, 510–530. [Google Scholar] [CrossRef]
- Kalogerakis, G.C.; Boparai, H.K.; Sleep, B.E. The journey of toluene to complete mineralization via heat-activated peroxydisulfate in water: Intermediates analyses, CO2 monitoring, and carbon mass balance. J. Hazard. Mater. 2022, 440, 129739. [Google Scholar] [CrossRef]
- Bareha, Y.; Affes, R.; Moinard, V.; Buffet, J.; Girault, R. A simple mass balance tool to predict carbon and nitrogen fluxes in anaerobic digestion systems. Waste Manag. 2021, 135, 47–59. [Google Scholar] [CrossRef]
- Kim, J.; Seo, B.; Lee, T.; Kim, J.; Kim, S.; Bae, G.-N.; Lee, G. Airborne estimation of SO2 emissions rates from a coal-fired power plant using two top-down methods: A mass balance model and Gaussian footprint approach. Sci. Total Environ. 2023, 855, 158826. [Google Scholar] [CrossRef]
No. | Search Term | Publication | Article | Reviews | Other |
---|---|---|---|---|---|
#1 | TS = (“carbon emission*” OR “carbon peak” OR “carbon neutral*” OR “carbon footprint”) | 40,944 | 36,878 | 3115 | 951 |
#2 | TS = (“CO2 emission*” OR “CO2 peak” OR “CO2 neutral*” OR “CO2 footprint”) | 48,390 | 45,058 | 2794 | 538 |
#3 | TS = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) | 17,842 | 16,051 | 1448 | 343 |
#4 | TI = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) | 2815 | 2339 | 217 | 259 |
#5 | KP = (“building sector” OR “construction sector” OR “building industry” OR “construction industry”) | 718 | 633 | 83 | 2 |
#6 | #1 AND #3 | 977 | 856 | 117 | 4 |
#7 | #2 AND #3 | 934 | 821 | 109 | 4 |
#8 | #1 AND #4 | 189 | 170 | 17 | 2 |
#9 | #1 AND #5 | 89 | 77 | 12 | 0 |
#10 | #2 AND #4 | 181 | 162 | 18 | 1 |
#11 | #2 AND #5 | 86 | 80 | 6 | 0 |
#12 | #8 OR #9 | 265 | 235 | 28 | 2 |
#13 | #10 OR #11 | 255 | 230 | 24 | 1 |
#14 | #12 OR #13 | 367 | 325 | 39 | 3 |
Rank | Author | Article | Citations | TLS |
---|---|---|---|---|
1 | Cai Weiguang | 22 | 1239 | 75 |
2 | Ma Minda | 12 | 890 | 30 |
3 | Du Qiang | 10 | 184 | 44 |
4 | Chen Jindao | 8 | 387 | 27 |
5 | Hong Jingke | 8 | 268 | 33 |
6 | Ren Hong | 8 | 284 | 33 |
7 | Shen Liyin | 8 | 603 | 30 |
8 | Huo Tengfei | 7 | 291 | 33 |
9 | Shi Qian | 6 | 354 | 19 |
10 | Bai Libiao | 5 | 53 | 22 |
11 | Feng Wei | 5 | 216 | 20 |
12 | Lu Yujie | 5 | 237 | 12 |
13 | Wu Min | 5 | 114 | 21 |
Rank | Organization | Country/Region | Article | Citations | TLS |
---|---|---|---|---|---|
1 | Chongqing University | China | 43 | 2041 | 86 |
2 | Hong Kong Polytech University | Hong Kong, China | 17 | 684 | 35 |
3 | Tsinghua University | China | 16 | 484 | 23 |
4 | Lawrence Berkeley National Laboratory | USA | 14 | 789 | 27 |
5 | Tongji University | China | 14 | 598 | 22 |
6 | Chang’an University | China | 12 | 195 | 9 |
7 | Southeast University | China | 8 | 253 | 15 |
8 | Dalian University of Technology | China | 7 | 77 | 10 |
9 | China Association of Building Energy Efficiency | China | 6 | 553 | 14 |
10 | Chinese Academy of Sciences | China | 6 | 159 | 12 |
11 | Hebei University of Technology | China | 6 | 152 | 10 |
12 | North China Electric Power University | China | 6 | 192 | 3 |
13 | Tianjin University | China | 6 | 134 | 7 |
No. | Cited References | Co-Citation Times | Burst, Strength, Begin-End | Citation Times |
---|---|---|---|---|
1 | Lu et al., 2016 [24] | 33 | 2.12, 2018–2022 | 131 |
2 | Shi et al., 2017 [25] | 30 | - | 122 |
3 | Huang et al., 2018 [26] | 30 | 3.09, 2019–2022 | 263 |
4 | Tan et al., 2018 [27] | 27 | - | 106 |
5 | Zhou et al., 2018 [28] | 26 | 2.73, 2020–2022 | 169 |
6 | Lin & Liu, 2015 [29] | 25 | 6.00, 2017–2020 | 91 |
7 | J. Chen et al., 2017 [30] | 24 | - | 96 |
8 | Hong et al., 2016 [31] | 24 | 1.64, 2016–2017 | 129 |
9 | Y. Wu et al., 2018 [32] | 22 | - | 134 |
10 | P. Wu et al., 2019 [33] | 21 | 3.91, 2020–2022 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wu, Z.; Yu, Y.; Wang, T.; Huang, S. Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps. Buildings 2025, 15, 1900. https://doi.org/10.3390/buildings15111900
Zhao Q, Wu Z, Yu Y, Wang T, Huang S. Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps. Buildings. 2025; 15(11):1900. https://doi.org/10.3390/buildings15111900
Chicago/Turabian StyleZhao, Qinfeng, Zhirui Wu, Yi Yu, Tian Wang, and Shan Huang. 2025. "Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps" Buildings 15, no. 11: 1900. https://doi.org/10.3390/buildings15111900
APA StyleZhao, Q., Wu, Z., Yu, Y., Wang, T., & Huang, S. (2025). Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps. Buildings, 15(11), 1900. https://doi.org/10.3390/buildings15111900