Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts: Distribution, Sources, and Health Risk Assessment from Rural Areas in Chiang Mai Province, Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sample Analysis
2.3. PAHs Sources Identification
2.4. Health Risk Assessment
Exposure Variable | Unit | Children | Adult | Reference |
---|---|---|---|---|
Dust ingestion rate (IR ingestion) | mg day−1 | 200 | 100 | [40] |
Exposure frequency (EF) | day year−1 | 180 | 180 | [41] |
Exposure duration (ED) | year | 6 | 24 | [40] |
CSF ingestion | mg kg−1 day−1 | 7.3 | 7.3 | [39] |
CSF inhalation | mg kg−1 day−1 | 3.85 | 3.85 | [39] |
CSF dermal | mg kg−1 day−1 | 25 | 25 | [39] |
Body weight (BW) | kg | 15 | 61.5 | [40] |
Average life span (AT) | day | 2550 | 2550 | [42] |
Particle emission factor (PEF) | m3 kg−1 | 1.36 × 109 | 1.36 × 109 | [43] |
Dermal exposure area (SA) | cm2 day−1 | 2800 | 5700 | [43] |
Skin adherence factor (AF) | mg cm−1 | 0.2 | 0.07 | [43] |
Dermal absorption fraction (ABS) | Unitless | 0.13 | 0.13 | [43] |
2.5. Statistical Analysis
3. Results and Discussion
3.1. PAHs Concentrations
3.2. Sources Identification of PAHs
3.2.1. Diagnostic Ratio for PAHs
3.2.2. Principal Component Analysis (PCA)
3.3. Health Risk Assessment of PAHs in House Dust
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Offor, C.; Nduka, J. Appraisal of polycyclic aromatic hydrocarbons (PAHs) in indoor dust of Eastern Nigeria and its implications in the COVID-19 years. J. Hazard. Mater. Adv. 2024, 14, 100424. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent. Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Rasmussen, P.; Kubwabo, C.; Gardner, H.; Levesque, C.; Beauchemin, S. Relationships between house characteristics and exposures to metal(loid)s and synthetic organic contaminants evaluated using settled indoor dust. Int. J. Environ. Res. Public Health 2022, 19, 10329. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Ali, N. Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. Sci. Total Environ. 2019, 696, 133995. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Golder, K.; Janoszka, B.; Gierat, B.; Muzyka, R. Mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs) in food—Occurrence, human health effects, and assessment methods of exposure. Environ. Med. 2023, 26, 8–15. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, Y.; Xu, J.; Chen, W.; Hu, T.P.; Xu, C.; Liu, W.; Qu, C.; Chen, W.; Zhang, J.; et al. Health risks associated with polycyclic aromatic hydrocarbons (PAHs) in dustfall collected from universities in Wuhan, China. Atmosphere 2022, 13, 1707. [Google Scholar] [CrossRef]
- Mosallaei, S.; Hashemi, H.; Hoseini, M.; Dehghani, M.; Naz, A. Polycyclic aromatic hydrocarbons (PAHs) in household dust: The association between PAHs, cancer risk and sick building syndrome. Build. Environ. 2023, 229, 109966. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Shen, X. Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ. Sci. Technol. 2001, 35, 840–844. [Google Scholar] [CrossRef]
- Arfaeinia, L.; Tabatabaie, T.; Miri, M.; Arfaeinia, H. Bioaccessibility-based monitoring and risk assessment of indoor dust-bound PAHs collected from housing and public buildings: Effect of influencing factors. Environ. Res. 2021, 204, 112039. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, X.; Yang, Y.Y.; Fan, L.; Han, X.; Li, L.; Liu, H.; Ge, T.X.; Su, L.Q.; Wang, X.; et al. Source, characterization of indoor dust PAHs and the health risk on Chinese children. Curr. Med. Sci. 2021, 41, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, I.; Dvoršćak, M.; Jagić, K.; Klinčić, D. Polycyclic aromatic hydrocarbons in indoor dust in Croatia: Levels, sources, and human health risks. Int. J. Environ. Res. Public Health 2022, 19, 11848. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, L.; He, Z.; Wang, Y. Health risk assessment of heavy metals and poly-aromatic hydrocarbons in particulate matter adsorbed by indoor air purifiers. Indoor Built Environ. 2022, 31, 1594–1612. [Google Scholar] [CrossRef]
- Grmasha, R.A.; Al-Sareji, O.J.; Salman, J.M.; Hashim, K.S. Polycyclic aromatic hydrocarbons (PAHs) in urban street dust within three land-uses of Babylon governorate, Iraq: Distribution, sources, and health risk assessment. J. King Saud Univ. Eng. Sci. 2022, 34, 231–239. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Iteku-Atata, E.O.C.; Odali, E.W.; Egobueze, F.E.; Tesi, G.O.; Nwajei, G.E.; Martincigh, B.S. Distribution, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in household dusts from rural, semi-urban and urban areas in the Niger Delta, Nigeria. Expo Health 2019, 11, 209–225. [Google Scholar] [CrossRef]
- Geravand, P.; Goudarzi, G.; Ahmadi, M. Polycyclic aromatic hydrocarbons (PAHs) in urban street dust in Masjed Soleyman, Khuzestan, Iran: Sources and health risk assessment. Int. J. Environ. Anal. Chem. 2022, 104, 4341–4351. [Google Scholar] [CrossRef]
- Dalvand, N.; Sobhanardakani, S.; Sadr, M.; Cheraghi, M.; Lorestani, B. Concentrations, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in household dust samples, the case of city of Khorramabad, Iran. Polycycl. Aromat. Compd. 2023, 44, 3043–3060. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, H.; Li, B. Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, southwest of China: Status, sources and potential human health risk. PLoS ONE 2015, 10, e0118141. [Google Scholar] [CrossRef]
- Shukla, S.; Khan, R.; Bhattacharya, P.; Devanesan, S.; AlSalhi, M.S. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. Chemosphere 2022, 292, 133413. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Q.; Han, P.; Zhang, Z.; Shengtao, J.; Yang, W. Source identification and toxicity apportionment of polycyclic aromatic hydrocarbons in surface soils in Beijing and Tianjin using a PMF-TEQ method. PLoS ONE 2022, 17, e0268615. [Google Scholar] [CrossRef] [PubMed]
- Sankar, T.; Kumar, A.; Kumar Mahto, D.; Das, K.; Narayan, P.; Fukate Jain, M.; Awachat, P.; Padghan, D.; Mohammad, F.; Al-Lohedan, H.; et al. The health risk and source assessment of polycyclic aromatic hydrocarbons (PAHs) in the soil of industrial cities in India. Toxics 2023, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Vega, E.; Lopez-Veneroni, D.; Ramírez Hernández, O.; Chow, J.; Watson, J. Particle-bound PAHs and chemical composition, sources and health risk of PM2.5 in a highly industrialized area. Aerosol Air Qual. Res. 2021, 21, 210047. [Google Scholar] [CrossRef]
- Mali, M.; Ragone, R.; Dell’Anna, M.; Romanazzi, G.; Damiani, L.; Mastrorilli, P. Improved identification of pollution source attribution by using PAH ratios combined with multivariate statistics. Sci. Rep. 2022, 12, 19298. [Google Scholar] [CrossRef]
- Sakizadeh, M. Spatial distribution and source identification together with environmental health risk assessment of PAHs along the coastal zones of the USA. Environ. Geochem. Health 2020, 42, 3333–3350. [Google Scholar] [CrossRef]
- Kawichai, S.; Prapamontol, T.; Chantara, S.; Kanyanee, T. Seasonal variation and sources estimation of PM2.5- bound PAHs from the ambient air of Chiang Mai City: An All-year-round Study in 2017. Chiang Mai J. Sci. 2020, 47, 958–972. [Google Scholar]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.D.; Cong, X.; Yan, Y.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef]
- Long, Y.; Dai, T.; Wu, Q. Sources and distribution of polycyclic aromatic hydrocarbons in street dust from the Chang-Zhu-Tan Region, Hunan, China. Environ. Monit. Assess. 2013, 185, 1377–1390. [Google Scholar] [CrossRef]
- Shen, M.; Liu, G.; Yin, H.; Zhou, L. Distribution, sources and health risk of PAHs in urban air-conditioning dust from Hefei, East China. Ecotoxicol. Environ. Saf. 2020, 194, 110442. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Yunker, M.; Vingarzan, R.; Mitchell, R.; Goyette, D.; Strachan, S. PAHs in the fraser river basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Davis, E.; Walker, T.R.; Adams, M.; Willis, R.; Norris, G.A.; Henry, R.C. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci. Total Environ. 2019, 691, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Lu, K.; Liu, Z. Investigating concentrations and sources of polycyclic aromatic hydrocarbons in South and Central Texas bays and estuaries along the Gulf of Mexico, USA. Front. Mar. Sci. 2024, 11, 1456717. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, N.; Wang, Y.; Ren, Y.; Yuan, Z.; Li, N. Concentrations of polycyclic aromatic hydrocarbons in street dust from bus stops in Qingyang city: Estimates of lifetime cancer risk and sources of exposure for daily commuters in Northwest China. Environ. Pollut. 2020, 266 Pt 2, 115222. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Karagkiozidou, O.; Argyropoulos, G.; Voutsa, D.; Samara, C. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environ. Sci. Pollut. Res. Int. 2016, 23, 3556–3568. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Petry, T.; Schmid, P.; Schlatter, C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 1996, 32, 639–648. [Google Scholar] [CrossRef]
- Hu, Y.; Bai, Z.; Zhang, L.; Wang, X.; Zhang, L.; Yu, Q.; Zhu, T. Health risk assessment for traffic policemen exposed to polycyclic aromatic hydrocarbons (PAHs) in Tianjin, China. Sci. Total Environ. 2007, 382, 240–250. [Google Scholar] [CrossRef]
- Yang, W.; Lang, Y.; Li, G. Cancer risk of polycyclic aromatic hydrocarbons (PAHs) in the soils from Jiaozhou Bay wetland. Chemosphere 2014, 112, 289–295. [Google Scholar] [CrossRef]
- Wei, Y.; Han, I.K.; Hu, M.; Shao, M.; Zhang, J.J.; Tang, X. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere 2010, 81, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, M.J.; Kang, Y.; Wang, H.S.; Leung, A.O.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; EPA: Washington, DC, USA, 2001; pp. 93552–93554.
- Alamri, S.H.; Ali, N.; Ali Albar, H.M.S.; Rashid, M.I.; Rajeh, N.; Ali Qutub, M.M.; Malarvannan, G. Polycyclic aromatic hydrocarbons in indoor dust collected during the COVID-19 pandemic lockdown in Saudi Arabia: Status, sources and human health risks. Int. J. Environ. Res. Public Health 2021, 18, 2743. [Google Scholar] [CrossRef]
- Xiao, Y.; Tong, F.; Kuang, Y.; Chen, B. Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in forest soils from urban to rural areas in the Pearl River Delta of Southern China. Int. J. Environ. Res. Public Health 2014, 11, 2642–2656. [Google Scholar] [CrossRef]
- Al-Harbi, M.; Alhajri, I.; Whalen, J.K. Health risks associated with the polycyclic aromatic hydrocarbons in indoor dust collected from houses in Kuwait. Environ. Pollut. 2020, 266, 115054. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Jiao, Z.; Gao, C.; Zaib, M.; Ruan, X.; Wang, Y. Potential health risks for long-term stays in underground parking garages: Implications of polycyclic aromatic hydrocarbons in surface dust. Indoor Air 2024, 2024, 5527710. [Google Scholar] [CrossRef]
- Whitehead, T.P.; Metayer, C.; Petreas, M.; Does, M.; Buffler, P.A.; Rappaport, S.M. Polycyclic aromatic hydrocarbons in residential dust: Sources of variability. Environ. Health Perspect. 2013, 121, 543–550. [Google Scholar] [CrossRef]
- Whitehead, T.; Metayer, C.; Gunier, R.B.; Ward, M.H.; Nishioka, M.G.; Buffler, P.; Rappaport, S.M. Determinants of polycyclic aromatic hydrocarbon levels in house dust. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 123–132. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Ma, Z.; Zhou, D.; Fu, L.; Liu, M.; Zhang, T.; Yang, J.; Zhen, Q. Source analysis and health risk assessment of polycyclic aromatic hydrocarbon (PAHs) in total suspended particulate matter (TSP) from Bengbu, China. Sci. Rep. 2024, 14, 5080. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Xing, W.; Zhou, Q.; Zhang, L.; Wu, Q.; Zhou, Z.; Chen, R.; Toriba, A.; Hayakawa, K.; et al. Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010–2018. J. Environ. Sci. 2021, 99, 72–79. [Google Scholar] [CrossRef]
- Hasan, G.M.M.; Rinky, F.; Das, A.; Ahmed, K.; Sikdar, K. Assessment of polycyclic aromatic hydrocarbon (PAH) levels and health risks in kitchen dust from wood, kerosene, and gas cooking systems in Cumilla, Bangladesh. J. Hazard Mater. Adv. 2024, 15, 100457. [Google Scholar] [CrossRef]
- Živančev, J.; Antić, I.; Buljovčić, M.; Đurišić-Mladenović, N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. Chemosphere 2022, 295, 133856. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A. Polycyclic Aromatic Hydrocarbons Profile of Kitchen Dusts. Bull. Environ. Contam. Toxicol. 2011, 86, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Nie, J.; Wang, Y.; Liu, Y. Assessment of polycyclic aromatic hydrocarbons in indoor dust from varying categories of rooms in Changchun city, northeast China. Environ. Geochem. Health 2017, 39, 15–27. [Google Scholar] [CrossRef]
- Chao, S.; Jianwei, L.; Yanjiao, C.; Cao, H.; Zhang, A. Implications of seasonal control of PM2.5-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environ. Pollut. 2018, 247, 685–695. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.; Lv, L.; Dong, W.; Chen, L.; Wu, W.; Yu, Y.A. nationwide survey of polycyclic aromatic hydrocarbons (PAHs) in household dust in China: Spatial distribution, sources, and health risk assessment. Environ. Geochem. Health 2023, 45, 4979–4993. [Google Scholar] [CrossRef]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Cao, H.; Chao, S.; Qiao, L.; Jiang, Y.; Zeng, X.; Fan, X. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in Southern Jiangsu, China. Sci. Total Environ. 2017, 575, 692–700. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Mattiuzi, C.D.; Agudelo-Castañeda, D.M.; Garcia Kde, O.; Wiegand, F. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 2013, 185, 9587–9602. [Google Scholar] [CrossRef]
- Kwon, H.O.; Choi, S.D. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci. Total Environ. 2014, 470–471, 1494–1501. [Google Scholar] [CrossRef]
- Asimina, S.; Dasopoulou, M.; Bairachtari, K.; Karavoltsos, S.; Sakellari, K.; Maggos, T. Contamination and potential risk assessment of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in house settled dust collected from residences of young children. Appl. Sci. 2021, 11, 1479. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Ling, W.; Liu, R.; Liu, J.; Kang, F.; Gao, Y. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere 2017, 168, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Somsunun, K.; Prapamontol, T.; Kuanpan, T.; Santijitpakdee, T.; Kohsuwan, K.; Jeytawan, N.; Thongjan, N. Health risk assessment of heavy metals in indoor household dust in urban and rural areas of Chiang Mai and Lamphun province, Thailand. Toxics 2023, 11, 1018. [Google Scholar] [CrossRef] [PubMed]
PAHs Compounds | Abbreviation | TEF | Mean | Minimum | Maximum | S.D. |
---|---|---|---|---|---|---|
Naphthalene | Nap | 0.001 | 288.7 | 219.3 | 666.4 | 70.5 |
Acenaphthylene | Acy | 0.001 | 149.0 | 46.4 | 540.3 | 144.6 |
Acenaphthene | Ace | 0.001 | N.D. | N.D. | N.D. | N.D. |
Fluorene | Flu | 0.001 | 50.8 | 22.0 | 164.3 | 40.5 |
Phenanthrene | Phe | 0.001 | 320.1 | 46.0 | 1706.0 | 441.9 |
Anthracene | Ant | 0.010 | 93.3 | 10.0 | 393.4 | 115.7 |
Fluoranthene | Fla | 0.001 | 721.9 | 42.9 | 5996.5 | 1310.6 |
Pyrene | Pyr | 0.001 | 1042.2 | 44.4 | 6966.9 | 1736.2 |
Benzo (a) anthracene | BaA | 0.100 | 349.0 | 22.1 | 5123.5 | 977.0 |
Chrysene | Chr | 0.010 | 624.5 | 48.0 | 5471.4 | 1220.5 |
Benzo (b) fluoranthene | BbF | 0.100 | 525.9 | 57.2 | 3355.5 | 791.9 |
Benzo (k) fluoranthene | BkF | 0.100 | 1040.3 | 139.4 | 3891.4 | 1285.3 |
Benzo (a) pyrene | BaP | 1.000 | 500.3 | 80.5 | 3685.4 | 775.3 |
Indenol (1,2,3-cd) pyrene | IcdP | 0.100 | 938.6 | 210.9 | 5099.3 | 1102.4 |
Dibenz (a,h) anthracene | DahA | 1.000 | 359.1 | 83.0 | 762.0 | 227.5 |
Benzo (g,h,i) perylene | BghiP | 0.010 | 932.2 | 201.6 | 4646.3 | 1100.2 |
∑PAHs | 3942.4 | 270.1 | 45,386.8 | 8175.1 |
PAHs | PC1 | PC2 | PC3 |
---|---|---|---|
Nap | −0.001 | 0.340 | 0.940 |
Acy | 0.414 | 0.721 | 0.544 |
Flu | 0.502 | 0.108 | 0.856 |
Phe | 0.767 | 0.317 | 0.442 |
Ant | 0.852 | 0.377 | 0.286 |
Fla | 0.965 | 0.260 | 0.043 |
Pyr | 0.941 | 0.307 | 0.138 |
BaA | 0.344 | 0.902 | 0.252 |
Chr | 0.740 | 0.643 | 0.151 |
BbF | 0.783 | 0.559 | 0.229 |
BkF | 0.655 | 0.701 | 0.279 |
BaP | 0.256 | 0.926 | 0.275 |
IcdP | 0.746 | 0.535 | 0.383 |
DahA | 0.671 | 0.729 | 0.010 |
BghiP | 0.897 | 0.277 | 0.262 |
Eigenvalues | 11.927 | 1.612 | 1.154 |
% of variance | 47.612 | 32.224 | 18.12 |
cumulative (%) | 47.612 | 79.836 | 97.956 |
ILCR | Children | Adult | ||||||
---|---|---|---|---|---|---|---|---|
Exposure Pathways (ILCR) | Exposure Pathways (ILCR) | |||||||
Ingestion | Dermal | Inhalation | Total | Ingestion | Dermal | Inhalation | Total | |
Min. | 1.17 × 10−5 | 1.46 × 10−5 | 2.28 × 10−5 | 2.64 × 10−5 | 8.06 × 10−6 | 1.43 × 10−5 | 6.25 × 10−10 | 2.24 × 10−5 |
Max. | 2.72 × 10−2 | 3.37 × 10−2 | 5.24 × 10−7 | 6.07 × 10−2 | 1.85 × 10−2 | 3.29 × 10−2 | 1.44 × 10−6 | 5.14 × 10−2 |
Mean | 2.92 × 10−3 | 3.64 × 10−3 | 5.67 × 10−8 | 6.57 × 10−3 | 2.00 × 10−3 | 3.56 × 10−3 | 1.55 × 10−7 | 5.57 × 10−3 |
S.D. | 5.42 × 10−3 | 6.76 × 10−3 | 1.05 × 10−7 | 1.22 × 10−2 | 3.72 × 10−3 | 6.60 × 10−3 | 2.88 × 10−7 | 1.03 × 10−2 |
Study Location | References | Population Group | Mean ILCR or LCR | Acceptable Risk Range |
---|---|---|---|---|
Chiang Mai, Thailand | This study | Children | 6.57 × 10−3 | 10−6 to 10−4 |
Adults | 5.57 × 10−3 | |||
Chiang Mai—Lamphun, Thailand | [64] | Children | 9.05 × 10−4 | 10−6 to 10−4 |
Adults | 5.31 × 10−4 | |||
Lahore, Pakistan | [24] | Children | 8.80 × 10−3 (winter) 9.16 × 10−3 (summer) | 10−6 to 10−4 |
Adults | 1.33 × 10−2 (winter) 1.38 × 10−2 (summer) | |||
Guizhou, China | [19] | Children | 3.08–6.14 × 10−6 | 10−6 to 10−4 |
Adults | 2.97–5.92 × 10−6 | |||
Croatia | [13] | Children | 2.18 × 10−7 | 10−6 to 10−4 |
Adults | 2.64 ×10−7 | |||
Saudi Arabia | [44] | Children | 1.00 ×10−4 | 10−6 to 10−4 |
Adults | 1.00 ×10−4 | |||
Iran (Khorramabad) | [18] | Children | 2.07 ×10−4 | 10−6 to 10−4 |
Adults | 1.83 ×10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santijitpakdee, T.; Hongsibsong, S.; Boonyapranai, K.; Kulprachakarn, K.; Parklak, W.; Ounjaijean, S.; Kawichai, S. Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts: Distribution, Sources, and Health Risk Assessment from Rural Areas in Chiang Mai Province, Thailand. Buildings 2025, 15, 1855. https://doi.org/10.3390/buildings15111855
Santijitpakdee T, Hongsibsong S, Boonyapranai K, Kulprachakarn K, Parklak W, Ounjaijean S, Kawichai S. Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts: Distribution, Sources, and Health Risk Assessment from Rural Areas in Chiang Mai Province, Thailand. Buildings. 2025; 15(11):1855. https://doi.org/10.3390/buildings15111855
Chicago/Turabian StyleSantijitpakdee, Teetawat, Surat Hongsibsong, Kongsak Boonyapranai, Kanokwan Kulprachakarn, Wason Parklak, Sakaewan Ounjaijean, and Sawaeng Kawichai. 2025. "Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts: Distribution, Sources, and Health Risk Assessment from Rural Areas in Chiang Mai Province, Thailand" Buildings 15, no. 11: 1855. https://doi.org/10.3390/buildings15111855
APA StyleSantijitpakdee, T., Hongsibsong, S., Boonyapranai, K., Kulprachakarn, K., Parklak, W., Ounjaijean, S., & Kawichai, S. (2025). Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts: Distribution, Sources, and Health Risk Assessment from Rural Areas in Chiang Mai Province, Thailand. Buildings, 15(11), 1855. https://doi.org/10.3390/buildings15111855