Assessment of Indoor Air Quality in Primary School Classrooms: A Case Study in Mbuji Mayi and Lubumbashi, Democratic Republic of Congo
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Schools
2.2. Data Acquisition
2.3. Ventilation Rates
2.4. Data Analysis
3. Results
3.1. Indoor Thermal Conditions
3.2. Air Quality Parameters
3.3. Calculation of Ventilation Rates
3.4. Correlation on Indoor Climate Parameters
4. Discussion
4.1. Ventilation Interventions
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haverinen-Shaughnessy, U.; Turunen, M.; Metsämuuronen, J.; Palonen, J.; Putus, T.; Kurnitski, J.; Shaughnessy, R. Sixth Grade Pupils’ Health and Performance and Indoor Environmental Quality in Finnish School Buildings. Br. J. Educ. Res. 2012, 2, 42–58. Available online: www.julkari.fi (accessed on 14 April 2023).
- Turunen, M.; Toyinbo, O.; Putus, T.; Nevalainen, A.; Shaughnessy, R.; Haverinen-Shaughnessy, U. Indoor environmental quality in school buildings, and the health and wellbeing of students. Int. J. Hyg. Environ. Health 2014, 217, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.D.; Lamas, F.B.; da Silva, M.G. Improving energy use in schools: From IEQ towards energy-efficient planning—Method and in-field application to two case studies. Energy Effic. 2019, 12, 1253–1277. [Google Scholar] [CrossRef]
- Bakó-Biró, Z.; Clements-Croome, D.J.; Kochhar, N.; Awbi, H.B.; Williams, M.J. Ventilation rates in schools and pupils’ performance. Build. Environ. 2012, 48, 215–223. [Google Scholar] [CrossRef]
- Lama, S.; Fu, C.; Lee, A. Indoor Air Quality (IAQ) Evaluation of Higher Education Learning Environments. J. Smart Build. Constr. Technol. 2022, 4, 1–14. [Google Scholar] [CrossRef]
- Cincinelli, A.; Martellini, T. Indoor air quality and health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef]
- Nyembwe, J.P.K.B.; Ogundiran, J.O.; Chenari, B.; Simões, N.A.V.; da Silva, M.G. The Indoor Climate of Hospitals in Tropical Countries: A Systematic Review. Energies 2023, 16, 3513. [Google Scholar] [CrossRef]
- Nyembwe, J.-P.K.B.; Ogundiran, J.O.; da Silva, M.G.; Simões, N.A.V.A.V. Evaluation of Noise Level in Intensive Care Units of Hospitals and Noise Mitigation Strategies. Case Study: Democratic Republic of Congo. Buildings 2023, 13, 278. [Google Scholar] [CrossRef]
- Avigo, D.; Godoi, A.F.L.; Janissek, P.R.; Makarovska, Y.; Krata, A.; Potgieter-Vermaak, S.; Alfoldy, B.; Van Grieken, R.; Godoi, R.H.M. Particulate matter analysis at elementary schools in Curitiba, Brazil. Anal. Bioanal. Chem. 2008, 391, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Nandasena, S. Indoor air pollution and respiratory health of children in the developing world. World J. Clin. Pediatr. 2013, 2, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Makri, A.; Stilianakis, N.I. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 2008, 211, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Fsadni, P.; Bezzina, F.; Fsadni, C.; Montefort, S. Impact of school air quality on children’s respiratory health. Indian J. Occup. Environ. Med. 2018, 22, 156–162. [Google Scholar] [CrossRef]
- Le, H.H.; Ngo, H.K.; Hieu, L.S.; Sly, P.D.; Phung, D.; Le An, P.; Vinh, N.N.; Dang, T.N.; Thuong, D.T.H.; Thanh, H.N.; et al. Indoor air pollution is associated with respiratory symptoms in children in urban Vietnam. Sci. Total. Environ. 2024, 917, 170556. [Google Scholar] [CrossRef] [PubMed]
- Wyon, D.P.; Wargocki, P. How Indoor Environment Affects Performance. Thought 2013, 3, 6. Available online: www.ashrae.org (accessed on 14 April 2024).
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173, 106749. [Google Scholar] [CrossRef]
- Liu, H.Y.; Dunea, D.; Iordache, S.; Pohoata, A. A review of airborne particulate matter effects on young children’s respiratory symptoms and diseases. Atmosphere 2018, 9, 150. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Su, H.; Ho, H.C.; Song, Y.; Zheng, H.; Hossain, M.Z.; Khan, A.; Bogale, D.; Zhang, H.; et al. Ambient particulate matter (PM1, PM2.5, PM10) and childhood pneumonia: The smaller particle, the greater short-term impact? Sci. Total. Environ. 2021, 772, 145509. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Zhu, L.; Yuan, F.; Kong, X.; Huang, T.; Cai, Y.-D. Analysis of the relationship between PM2. 5 and lung cancer based on protein-protein interactions. Comb. Chem. High Throughput Screen. 2016, 19, 100–108. [Google Scholar] [CrossRef]
- Jin, X.-T.; Chen, M.-L.; Li, R.-J.; An, Q.; Song, L.; Zhao, Y.; Xiao, H.; Cheng, L.; Li, Z.-Y. Progression and inflammation of human myeloid leukemia induced by ambient PM2.5 exposure. Arch. Toxicol. 2016, 90, 1929–1938. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar] [PubMed]
- Dubey, A.; Kotnala, G.; Mandal, T.K.; Sonkar, S.C.; Singh, V.K.; Guru, S.A.; Bansal, A.; Irungbam, M.; Husain, F.; Goswami, B.; et al. Evidence of the presence of SARS-CoV-2 virus in atmospheric air and surfaces of a dedicated COVID hospital. J. Med. Virol. 2021, 93, 5339–5349. [Google Scholar] [CrossRef]
- Kalisa, E.; Clark, M.L.; Ntakirutimana, T.; Amani, M.; Volckens, J. Exposure to indoor and outdoor air pollution in schools in Africa: Current status, knowledge gaps, and a call to action. Heliyon 2023, 9, e18450. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, V.; Wichmann, J.; Voyi, K. Indoor and outdoor PM10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa. BMC Public Health 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Muimba-Kankolongo, A.; Nkulu, C.B.L.; Mwitwa, J.; Kampemba, F.M.; Nabuyanda, M.M. Impacts of Trace Metals Pollution of Water, Food Crops, and Ambient Air on Population Health in Zambia and the DR Congo. J. Environ. Public Health 2022, 2022, 4515115. [Google Scholar] [CrossRef] [PubMed]
- Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decrée, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Nyembwe, J.-P.K.B.; Munanga, J.K.; Simões, N.; da Silva, M.G. Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo. Buildings 2024, 14, 1996. [Google Scholar] [CrossRef]
- Ogundiran, J.O.; Nyembwe, J.-P.K.B.; Ogundiran, J.; Ribeiro, A.S.N.; da Silva, M.G. A Systematic Review of Indoor Environmental Quality in Passenger Transport Vehicles of Tropical and Subtropical Regions. Atmosphere 2025, 16, 140. [Google Scholar] [CrossRef]
- prEN 16798-1:2015; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Standards Committee: Bruxelles, Belgium, 2015.
- Toyinbo, O. Indoor Environmental Quality, Pupil’s Health and Academic Performance. Ph.D. Thesis, University of Eastern Finland, Kuopio, Finland, 2017. [Google Scholar] [CrossRef]
- Mahbob, N.S.; Kamaruzzaman, S.N.; Salleh, N.; Sulaiman, R. A correlation studies of indoor environmental quality (IEQ) towards productive workplace. In Proceedings of the 2nd International Conference on Environmental Science and Technology (ICEST 2011), Singapore, 26–28 February 2011; Volume 6, pp. 434–438. [Google Scholar]
- Kalisa, E.; Kuuire, V.; Adams, M. Children’s exposure to indoor and outdoor black carbon and particulate matter air pollution at school in Rwanda, Central-East Africa. Environ. Adv. 2023, 11, 100334. [Google Scholar] [CrossRef]
- Olufemi, A.C.; Mji, A.; Mukhola, M.S. Health risks of exposure to air pollutants among students in schools in the vicinities of coal mines. Energy Explor. Exploit. 2019, 37, 1638–1656. [Google Scholar] [CrossRef]
- Nyembwe, J.-P.K.B.; M’zimbes, S.C.; Albino, N.; Simões, V.; Da Silva, M.G. Evaluation of Indoor Air and Natural Ventilation Complexity in Hospital Wards in the Democratic Republic of Congo (DRC). Proceedings of RoomVent 2024—The 17th RoomVent Conference, Stockholm, Sweden, 22 April 2024; Paper 552. pp. 1–8. Available online: https://invitepeople.com/public/events/fe41371a0b/pages/ed19d3ae89 (accessed on 27 April 2024).
- Godoi, R.H.; Godoi, A.F.; Junior, S.J.G.; Paralovo, S.L.; Borillo, G.C.; Barbosa, C.G.G.; Arantes, M.G.; Charello, R.C.; Filho, N.A.R.; Grassi, M.T.; et al. Healthy environment—Indoor air quality of Brazilian elementary schools nearby petrochemical industry. Sci. Total Environ. 2013, 463–464, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review. Environ. Int. 2018, 121, 491–506. [Google Scholar] [CrossRef]
- Manuel, G.d.S. Assessing and Communicating Indoor Environmental Quality; REHVA: Ixelles, Belgium, 2019. [Google Scholar]
- Ogundiran, J.O.; Nyembwe, J.P.K.B.; Ribeiro, A.S.N.; da Silva, M.G. A Field Survey on Indoor Climate in Land Transport Cabins of Buses and Trains. Atmosphere 2024, 15, 589. [Google Scholar] [CrossRef]
- ISO 7730; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
- ASTM D6245-18; Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation. ASTM: West Conshohocken, PA, USA, 2018.
- Carlos, M. Spreadsheets for the Calculation of Thermal Comfort Indices pmv and ppd. 2015. Available online: https://www.researchgate.net/publication/255971260_SPREADSHEETS_FOR_THE_CALCULATION_OF_THERMAL_COMFORT_INDICES_PMV_AND_PPD (accessed on 25 October 2023).
- EN 16798-1; Energy Performance of Buildings-Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Building Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics-Module M1-6. European Standards Organizations: Brussels, Belgium, 2019. Available online: http://drafts.bsigroup.com/ (accessed on 14 April 2024).
- Seppänen, O. The effect of ventilation on health and other human responses. In Building Ventilation; Routledge: Abingdon, UK, 2006; pp. 265–282. [Google Scholar]
- Mendell, M.J.; Heath, G.A. Do Indoor Pollutants and Thermal Conditions in Schools Influence Student Performance? A Critical Review of the Literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Noti, J.D.; Blachere, F.M.; McMillen, C.M.; Lindsley, W.G.; Kashon, M.L.; Slaughter, D.R.; Beezhold, D.H. High humidity leads to loss of infectious influenza virus from simulated coughs. PLoS ONE 2013, 8, e57485. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Fanger, O. Productivity is affected by the air quality in offices. Proc. Healthy Build. 2000, 1, 635–640. [Google Scholar]
- Mendell, M.J.; Eliseeva, E.A.; Davies, M.M.; Spears, M.; Lobscheid, A.; Fisk, W.J.; Apte, M.G. Association of classroom ventilation with reduced illness absence: A prospective study in California elementary schools. Indoor Air 2013, 23, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, O.; William, F.; Mark, M. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Wargocki, P. Productivity and Health Effects of high Indoor Air Quality; Elsevier: Amsterdam, The Netherlands, 2011; pp. 688–693. [Google Scholar]
- Sundell, J. On the history of indoor air quality and health. Indoor Air 2004, 14 (Suppl. 7), 51–58. Available online: https://pubmed.ncbi.nlm.nih.gov/15330772/ (accessed on 14 April 2023). [CrossRef] [PubMed]
- Laiman, R.; He, C.; Mazaheri, M.; Clifford, S.; Salimi, F.; Crilley, L.R.; Mokhtar, M.A.M.; Morawska, L. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmos. Environ. 2014, 94, 28–35. [Google Scholar] [CrossRef]
- ASHRAE 62.1; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Peachtree Corners, GA, USA, 2019.
- Shendell, D.G.; Prill, R.; Fisk, W.J.; Apte, M.G.; Blake, D.; Faulkner, D. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 2004, 14, 333–341. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Rejc, T.; Kukec, A.; Bizjak, M.; GodičTorkar, K. Microbiological and chemical quality of indoor air in kindergartens in Slovenia. Int. J. Environ. Health Res. 2020, 30, 49–62. [Google Scholar] [CrossRef] [PubMed]
- St-Jean, M.; St-Amand, A.; Gilbert, N.L.; Soto, J.C.; Guay, M.; Davis, K.; Gyorkos, T.W. Indoor air quality in Montréal area day-care centres, Canada. Environ. Res. 2012, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huebner, G.; Bagkeris, E.; Ucci, M.; Mumovic, D. Effects of short-term exposure to moderate pure carbon dioxide levels on cognitive performance, health symptoms and perceived indoor environment quality. Build. Environ. 2023, 245, 110967. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- SANS 1929:2005; Guideline for the Management of Domestic Indoor Air Quality: A Guide for Environmental Health Practitioners in South Africa. South African Bureau of Standards: Pretoria, South Africa, 2019.
- Jung, C.C.; Huang, C.Y.; Su, H.J.; Chen, N.T.; Yeh, C.L. Impact of agricultural activity on PM2.5 and its compositions in elementary schools near corn and rice farms. Sci. Total Environ. 2024, 906, 167496. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, A.; Relvas, H.; Miranda, A.I.; Ferreira, J.; Lopes, D.; Rafael, S.; Almeida, S.M.; Faria, T.; Martins, V.; Canha, N.; et al. Analysis of spatial factors, time-activity and infiltration on outdoor generated PM2.5 exposures of school children in five European cities. Sci. Total Environ. 2021, 785, 147111. [Google Scholar] [CrossRef]
- Canha, N.; Martinho, M.; Silva, M.A.; Almeida, S.M.; Pegas, P.; Alves, C.; Pio, C.; Trancoso, M.A.; Sousa, R.; Mouro, F.; et al. Indoor air quality in primary schools. Int. J. Environ. Pollut. 2012, 50, 396–410. [Google Scholar] [CrossRef]
- Meo, S.A.; Salih, M.A.; Al-Hussain, F.; Alkhalifah, J.M.; Meo, A.S.; Akram, A. Environmental pollutants PM2.5, PM10, carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) impair human cognitive functions. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 789–796. [Google Scholar]
- Gao, J.; Wargocki, P.; Wang, Y. Indoor Air Quality and Thermal Environment in Classrooms with Different Ventilation Systems. REHVA J. 2014, 51, 10–14. [Google Scholar]
- Son, Y.S. A review on indoor and outdoor factors affecting the level of particulate matter in classrooms of elementary schools. J. Build. Eng. 2023, 75, 106957. [Google Scholar] [CrossRef]
- Sung, H.J.; Kim, S.H.; Kim, H. Analysis of Building Retrofit, Ventilation, and Filtration Measures for Indoor Air Quality in a Real School Context: A Case Study in Korea. Buildings 2023, 13, 1033. [Google Scholar] [CrossRef]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; de Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- Ogundiran, J.O.; Nyembwe, J.-P.K.B.; Ribeiro, A.S.N.; da Silva, M.G. Indoor Environmental Quality Assessment of Train Cabins and Passenger Waiting Areas: A Case Study of Nigeria. Sustainability 2023, 15, 16533. [Google Scholar] [CrossRef]
Equipment | Calibration | Resolution Settings | Device Range |
---|---|---|---|
IEQ multiprobe device | Coverage factor (2), Probability (95%), T (±0.2 °C), CO2 (±35 ppm), RH (±1%) | Probe, sampling interval (5 s), data logging via USB connection to a computer | CO2 (ppm), operative temperature (°C), RH, Pa, VOCs, Illuminance |
TROTEC PC220 | 1 μg/m3 | PM2.5/PM10, 0 to 2000 μg/m3 |
Children Avg. Age | S1 | S2 | ||||||
---|---|---|---|---|---|---|---|---|
9–10 | max | min | Mean | SD | max | min | Mean | SD |
CO2 (ppm) | 9459 | 822 | 1224 | 567.4 | 6764 | 602 | 1039 | 562.5 |
T(°C) | 28.56 | 19.75 | 23.98 | 1.63 | 25.38 | 16.69 | 20.93 | 1.62 |
RH (%) | 69.64 | 29.78 | 56.08 | 6.59 | 72.85 | 30.38 | 57.04 | 7.05 |
PM10 (μg/m3) in | 636 | 571 | 578 | 4.93 | 727 | 499 | 580 | 44.84 |
PM2.5 μg/m3) in | 224 | 159 | 166 | 4.93 | 357 | 129 | 210 | 44.84 |
PM10 (μg/m3) out | 727 | 499 | 580 | 4.9 | 953 | 510 | 670 | 24.15 |
PM2.5 μg/m3) out | 357 | 129 | 210 | 4.9 | 656 | 213 | 373 | 24.15 |
S1 | S2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Week | T | SD | RH | SD | CO2 | SD | T | SD | RH | SD | CO2 | SD |
1 | 25.35 | 0.6 | 43 | 2.2 | 1315 | 351.5 | 22.29 | 0.7 | 43 | 2.1 | 1843 | 353.4 |
2 | 25.29 | 0.8 | 53 | 4.4 | 1361 | 324.0 | 22.26 | 1.4 | 54 | 3.6 | 1686 | 319.8 |
3 | 25.47 | 0.8 | 55 | 6.6 | 1368 | 345.3 | 22.27 | 1.0 | 55 | 6.1 | 1620 | 592.8 |
4 | 24.62 | 0.9 | 57 | 4.6 | 1384 | 360.7 | 21.44 | 0.9 | 58 | 4.7 | 1744 | 409.9 |
5 | 24.99 | 0.9 | 58 | 2.9 | 1483 | 636.3 | 21.35 | 0.8 | 58 | 3.7 | 1859 | 626.2 |
6 | 23.71 | 0.8 | 58 | 3.1 | 1803 | 334.7 | 18.79 | 0.5 | 60 | 2.2 | 1933 | 241.1 |
7 | 21.87 | 1.0 | 59 | 3.8 | 1683 | 432.2 | 19.30 | 1.0 | 57 | 3.0 | 1750 | 513.3 |
8 | 22.58 | 1.0 | 60 | 4.5 | 1586 | 755.4 | 19.70 | 0.7 | 65 | 5.1 | 1935 | 765.2 |
9 | 22.88 | 1.1 | 63 | 4.5 | 1687 | 826.0 | 20.52 | 0.8 | 65 | 5.1 | 2174 | 405.9 |
10 | 22.32 | 0.7 | 57 | 5.0 | 1946 | 569.1 | 18.34 | 0.6 | 56 | 5.7 | 2260 | 327.2 |
School | Classroom Volume (m3) | Number of Children | Total Fresh Air Flow Rate (L/s) | Ventilation Rate (L/s per Person) | Airflow Rate per Hour (m3/h) | Air Change Rate per Hour (ACH) |
---|---|---|---|---|---|---|
S1 | 459 | 57 | 1.85 | 0.033 | 0.0666 | 0.145 |
S2 | 423 | 45 | 2.10 | 0.046 | 0.0756 | 0.179 |
CO2 (in) | T (in) | RH (in) | PM2.5 (in) | PM2.5 (out) | PM 10 (in) | PM10 (out) | |
---|---|---|---|---|---|---|---|
CO2 (in) | 1.000 | ||||||
T (in) | 0.899 | 1.000 | |||||
RH (in) | −0.064 | −0.344 | 1.000 | ||||
PM2.5 (in) | 0.440 | 0.417 | 0.108 | 1.000 | |||
PM2.5 (out) | 0.540 | 0.590 | −0.115 | 0.609 | 1.000 | ||
PM10 (in) | 0.440 | 0.417 | 0.108 | 1.000 | 0.509 | 1.000 | |
PM10 (out) | 0.445 | 0.504 | −0.136 | 0.613 | 0.699 | 0.413 | 1.000 |
CO2 (in) | T (in) | RH (in) | PM2.5 (in) | PM2.5 (out) | PM10 (in) | PM10 (out) | |
---|---|---|---|---|---|---|---|
CO2 (in) | 1.000 | ||||||
T (in) | −0.384 | 1.000 | |||||
RH (in) | 0.305 | 0.250 | 1.000 | ||||
PM2.5 (in) | 0.066 | 0.290 | 0.341 | 1.000 | |||
PM2.5 (out) | −0.222 | 0.599 | 0.548 | 0.560 | 1.000 | ||
PM10 (in) | 0.066 | 0.290 | 0.341 | 1.000 | 0.460 | 1.000 | |
PM10 (out) | −0.222 | 0.599 | 0.548 | 0.360 | 1.000 | 0.360 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyembwe, J.P.K.B.; Florent Mbwisi Takizala, J.; Kalonji Muangala, S.; Kayembe Nyembwe, O.; Ogundiran, J.O.; Gameiro da Silva, M. Assessment of Indoor Air Quality in Primary School Classrooms: A Case Study in Mbuji Mayi and Lubumbashi, Democratic Republic of Congo. Buildings 2025, 15, 730. https://doi.org/10.3390/buildings15050730
Nyembwe JPKB, Florent Mbwisi Takizala J, Kalonji Muangala S, Kayembe Nyembwe O, Ogundiran JO, Gameiro da Silva M. Assessment of Indoor Air Quality in Primary School Classrooms: A Case Study in Mbuji Mayi and Lubumbashi, Democratic Republic of Congo. Buildings. 2025; 15(5):730. https://doi.org/10.3390/buildings15050730
Chicago/Turabian StyleNyembwe, Jean Paul Kapuya Bulaba, Junior Florent Mbwisi Takizala, Serge Kalonji Muangala, Olivier Kayembe Nyembwe, John Omomoluwa Ogundiran, and Manuel Gameiro da Silva. 2025. "Assessment of Indoor Air Quality in Primary School Classrooms: A Case Study in Mbuji Mayi and Lubumbashi, Democratic Republic of Congo" Buildings 15, no. 5: 730. https://doi.org/10.3390/buildings15050730
APA StyleNyembwe, J. P. K. B., Florent Mbwisi Takizala, J., Kalonji Muangala, S., Kayembe Nyembwe, O., Ogundiran, J. O., & Gameiro da Silva, M. (2025). Assessment of Indoor Air Quality in Primary School Classrooms: A Case Study in Mbuji Mayi and Lubumbashi, Democratic Republic of Congo. Buildings, 15(5), 730. https://doi.org/10.3390/buildings15050730