Study on the Shear Behaviors and Capacity of Double-Sided Concrete-Encased Composite Steel Plate Shear Walls by Experiment and Finite Element Analysis
Abstract
1. Introduction
2. Experimental Program
2.1. Specimen Design and Material Properties
2.2. Test Setup and Instrumentations
3. Experimental Observations and Results
3.1. Representative Behaviors of Specimen CSPW-20
3.2. Comparisons of Specimens CSPW-30 and -40
4. Finite Element Model of the C-PSW/CE
4.1. Establishment of FEM
4.2. Validation of Finite Element Model
5. Finite Element Analysis on Shear Behaviors of C-PSW/CEs
5.1. Parameters of FEM Specimens
5.2. Distributions and Developments of Internal Forces
5.3. Shear Force–Drift Ratio Responses of Specimen C-PSW/CE
6. Mechanics-Based Model of Shear Force–Drift Ratio (V-θ)
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AISC. ANSI/AISC 341-16 Seismic Provisions for Structural Steel Buildings; American Institute of Steel Construction (AISC): Chicago, IL, USA, 2016. [Google Scholar]
- Zhao, Q.H.; Astaneh-Asl, A. Cyclic behavior of traditional and innovative composite shear walls. J. Struct. Eng. 2004, 130, 271–284. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Soltani, M.; Ayazi, A. Experimental investigation of composite shear walls under shear loadings. Thin Walled Struct. 2011, 49, 842–854. [Google Scholar] [CrossRef]
- Shafaei, S.; Farahbod, F.; Ayazi, A. The wall-frame and the steel-concrete interactions in composite shear walls. Struct. Des. Tall Spec. 2018, 27, e1476. [Google Scholar] [CrossRef]
- Guo, L.; Li, R.; Rong, Q.; Zhang, S. Cyclic behavior of SPSW and CSPSW in composite frame. Thin Walled Struct. 2012, 51, 39–52. [Google Scholar] [CrossRef]
- Feng, X.; Yu, J.; Shen, J. Seismic behavior of composite steel plate shear walls with rubber-coated uplift-restrained studs. J. Constr. Steel Res. 2021, 182, 106683. [Google Scholar] [CrossRef]
- Hou, J.; Guo, L.; Yan, J. Steel plate-restraining panel interaction behavior in buckling-restrained steel plate shear walls. Thin Walled Struct. 2021, 169, 108348. [Google Scholar] [CrossRef]
- Farahbakhshtooli, A.; Bhowmick, A. Seismic collapse assessment of composite plate shear walls. J. Struct. Eng. 2020, 146, 04020266. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, W.; Sun, Z.; Xu, S.; Wang, B. Seismic performance analysis of corrugated-steel-plate composite shear wall based on corner failure. J. Constr. Steel Res. 2021, 180, 106606. [Google Scholar] [CrossRef]
- Jin, S.; Bai, J. Experimental investigation of buckling-restrained steel plate shear walls with inclined-slots. J. Constr. Steel Res. 2019, 155, 144–156. [Google Scholar] [CrossRef]
- Jin, S.; Yang, S.; Bai, J. Numerical and experimental investigation of the full-scale buckling-restrained steel plate shear wall with inclined slots. Thin Walled Struct. 2019, 144, 106362. [Google Scholar] [CrossRef]
- Shafaei, S.; Farahbod, F.; Ayazi, A. Concrete stiffened steel plate shear walls with an unstiffened opening. Structures 2017, 12, 40–53. [Google Scholar] [CrossRef]
- Meghdadaian, M.; Ghalehnovi, M. Improving seismic performance of composite steel plate shear walls containing openings. J. Build. Eng. 2019, 21, 336–342. [Google Scholar] [CrossRef]
- Ayazi, A.; Shafaei, S. Steel-concrete composite shear walls using precast high performance fiber reinforced concrete panels. Struct. Des. Tall Spec. 2019, 28, e1617. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Pan, J. Mechanical behavior of full-scale composite steel plate shear wall restrained by ECC panels. J. Build. Eng. 2021, 44, 102864. [Google Scholar] [CrossRef]
- Rassouli, B.; Shafaei, S.; Ayazi, A.; Farahbod, F. Experimental and numerical study on steel-concrete composite shear wall using light-weight concrete. J. Constr. Steel Res. 2016, 126, 117–128. [Google Scholar] [CrossRef]
- Guo, L.; Ma, X.; Li, R.; Zhang, S. Experimental research on the seismic behavior of CSPSWs connected to frame beams. Earthq. Eng. Eng. Vib. 2011, 10, 65–73. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, H.; Hu, Y. Experimental seismic performance of steel- and composite steel-panel wall strengthened steel frames. Arch. Civ. Mech. Eng. 2017, 17, 520–534. [Google Scholar] [CrossRef]
- Wei, M.; Liew, J.Y.R.; Du, Y.; Fu, X. Seismic behavior of novel partially connected buckling-restrained steel plate shear walls. Soil Dyn. Earthq. Eng. 2017, 103, 64–75. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Jiang, J. Mechanical behavior of buckling restrained steel plate shear walls with two-side connections. Eng. Struct. 2017, 138, 283–292. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, J.; Zhang, D.; Li, Y. Cyclic performance of concrete-filled double-skin steel tube frames strengthened with beam-only-connected composite steel plate shear walls. J. Build. Eng. 2020, 31, 101376. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhu, Y.; Wu, C.; Zhou, Y.; Han, Q. Mechanical performance of sustainable modular prefabricated composite shear panels under cyclic loading. J. Constr. Steel Res. 2021, 179, 106423. [Google Scholar] [CrossRef]
- Li, Z.; Ge, L.; Qi, Y.; Geng, Y.; Teng, J. Design and experimental study of a buckling-restrained steel plate shear wall with novel buckling-restrained panels for improving bearing capacity and energy dissipation. Eng. Struct. 2021, 244, 112812. [Google Scholar] [CrossRef]
- Qi, Y.; Gu, Q.; Sun, G.; Zhao, B. Shear force demand on headed stud for the design of composite steel plate shear wall. Eng. Struct. 2017, 148, 780–792. [Google Scholar] [CrossRef]
- Qi, Y.; Gu, Q.; Sun, G.; Zhao, B.; Wang, H. Concrete panel thickness demand for the design of composite steel plate shear wall. Struct. Des. Tall Spec. 2019, 28, e1605. [Google Scholar] [CrossRef]
- Qi, Y.; Gu, Q.; Sun, G.; Zhao, B.; Wang, H. Tensile force and bending moment demands on headed stud for the design of composite plate shear wall. Adv. Steel Constr. 2019, 15, 338–348. [Google Scholar] [CrossRef]
- Lei, J.; Qi, Y.; Gu, Q. Mechanisms of plasticity development and energy dissipation on concrete-encased steel plate shear wall with boundary steel frame under cyclic loading. Case Stud. Constr. Mater. 2023, 18, e02089. [Google Scholar] [CrossRef]
- Qi, Y.; Gu, Q.; Wang, H. Study on the shear mechanism and resistance of single-side concrete-encased composite plate shear wall. Thin Walled Struct. 2022, 180, 109876. [Google Scholar] [CrossRef]
- JGJ/T 380-2015; Technical Specification for Steel Plate Shear Walls. China Architecture and Building Press: Beijing, China, 2015.
- Astaneh-Asl, A. Seismic Behavior and Design of Composite Steel Plate Shear Walls; Structural Steel Educational Council: Moraga, CA, USA, 2002. [Google Scholar]
- SEI/ASCE 7-16; Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE): Reston, VA, USA, 2016.
- FEMA 356; Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency (FEMA): Washington, DC, USA, 2000.
- Rahnavard, R.; Hassanipour, A.; Mounesi, A. Numerical study on important parameters of composite steel-concrete shear walls. J. Constr. Steel Res. 2016, 121, 441–456. [Google Scholar] [CrossRef]
- GB50010-2010; Design of Concrete Structures. China Architecture and Building Press: Beijing, China, 2015.
- Javadi, M.; Saavedra Flores, E.I.S.; Yanez, S.J.; Avudaiappan, S.; Pina, J.C.; Guzmán, C.F. Investigation of the influence of design parameters on the strength of steel–concrete composite shear walls by finite element simulations. Buildings 2023, 13, 187. [Google Scholar] [CrossRef]
Specimen | TS (mm) | TC (mm) |
---|---|---|
CSPW-TS5-TCx | 5 | 60, 70, 80, 90, 100 |
CSPW-TS10-TCx | 10 | 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 |
CSPW-TS15-TCx | 15 | 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 |
CSPW-TS20-TCx | 20 | 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 |
Specimen | K (kN × 106) | Equation (1) (kN × 106) | (%) | Vy (kN) | Equation (5) (kN) | (%) |
---|---|---|---|---|---|---|
③ | ④ | |||||
CSPW-20 (test) | 0.28 | 0.30 | −7.14 | 736.1 | 744.1 | −1.09 |
CSPW-30 (test) | 0.31 | 0.34 | −9.68 | 845.9 | 809.2 | 4.34 |
CSPW-40 (test) | 0.34 | 0.38 | −11.76 | 868.0 | 874.4 | −0.74 |
CSPW-TS5-TC60 | 1.57 | 1.52 | 3.18 | 2836.3 | 2840.46 | −0.15 |
CSPW-TS5-TC70 | 1.68 | 1.62 | 3.57 | 2943.6 | 2973.12 | −1.00 |
CSPW-TS5-TC80 | 1.74 | 1.71 | 1.72 | 3081.1 | 3105.78 | −0.80 |
CSPW-TS5-TC90 | 1.83 | 1.81 | 1.09 | 3154.0 | 3238.44 | −2.68 |
CSPW-TS5-TC100 | 1.90 | 1.91 | −0.53 | 3296.2 | 3371.1 | −2.27 |
CSPW-TS10-TC60 | 2.55 | 2.46 | 3.53 | 5042.9 | 5065.9 | −0.46 |
CSPW-TS10-TC70 | 2.64 | 2.55 | 3.41 | 5215.3 | 5228.7 | −0.26 |
CSPW-TS10-TC80 | 2.70 | 2.65 | 1.85 | 5378.9 | 5391.5 | −0.23 |
CSPW-TS10-TC90 | 2.85 | 2.75 | 3.51 | 5345.9 | 5282.9 | 1.18 |
CSPW-TS10-TC100 | 2.94 | 2.84 | 3.40 | 5455.5 | 5415.6 | 0.73 |
CSPW-TS10-TC120 | 3.03 | 3.04 | −0.33 | 5771.5 | 5680.9 | 1.57 |
CSPW-TS10-TC140 | 3.14 | 3.23 | −2.87 | 6001.6 | 5946.2 | 0.92 |
CSPW-TS10-TC160 | 3.43 | 3.43 | 0.00 | 6225.3 | 6211.6 | 0.22 |
CSPW-TS10-TC180 | 3.54 | 3.62 | −2.26 | 6490.6 | 6476.9 | 0.21 |
CSPW-TS10-TC200 | 3.58 | 3.82 | −6.70 | 6672.0 | 6742.2 | −1.05 |
CSPW-TS15-TC60 | 3.41 | 3.39 | 0.59 | 7142.4 | 7110.4 | 0.45 |
CSPW-TS15-TC70 | 3.50 | 3.49 | 0.29 | 7310.7 | 7273.2 | 0.51 |
CSPW-TS15-TC80 | 3.63 | 3.59 | 1.10 | 7467.3 | 7436.0 | 0.42 |
CSPW-TS15-TC90 | 3.71 | 3.68 | 0.81 | 7631.3 | 7598.8 | 0.43 |
CSPW-TS15-TC100 | 3.78 | 3.78 | 0.00 | 7792.1 | 7761.6 | 0.39 |
CSPW-TS15-TC120 | 3.87 | 3.97 | −2.58 | 8202.1 | 8087.2 | 1.40 |
CSPW-TS15-TC140 | 4.05 | 4.17 | −2.96 | 8230.6 | 7990.5 | 2.92 |
CSPW-TS15-TC160 | 4.26 | 4.36 | −2.35 | 8477.5 | 8256.1 | 2.61 |
CSPW-TS15-TC180 | 4.39 | 4.56 | −3.87 | 8734.1 | 8521.4 | 2.44 |
CSPW-TS15-TC200 | 4.43 | 4.75 | −7.22 | 9000.0 | 8786.7 | 2.37 |
CSPW-TS20-TC60 | 4.21 | 4.33 | −2.85 | 9157.9 | 9154.9 | 0.03 |
CSPW-TS20-TC70 | 4.30 | 4.42 | −2.79 | 9339.9 | 9317.7 | 0.24 |
CSPW-TS20-TC80 | 4.36 | 4.52 | −3.67 | 9602.3 | 9480.5 | 1.27 |
CSPW-TS20-TC90 | 4.40 | 4.62 | −5.00 | 9710.5 | 9643.3 | 0.69 |
CSPW-TS20-TC100 | 4.50 | 4.72 | −4.89 | 9822.2 | 9806.1 | 0.16 |
CSPW-TS20-TC120 | 4.78 | 4.91 | −2.72 | 10112.4 | 10,131.7 | −0.19 |
CSPW-TS20-TC140 | 4.85 | 5.10 | −5.15 | 10613.8 | 10,457.3 | 1.47 |
CSPW-TS20-TC160 | 5.10 | 5.30 | −3.92 | 11034.9 | 10,783.0 | 2.28 |
CSPW-TS20-TC180 | 5.20 | 5.49 | −5.58 | 10970.8 | 10,565.9 | 3.69 |
CSPW-TS20-TC200 | 5.30 | 5.69 | −7.36 | 11252.3 | 10,831.2 | 3.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Qi, Y.; Wang, H.; Chen, D. Study on the Shear Behaviors and Capacity of Double-Sided Concrete-Encased Composite Steel Plate Shear Walls by Experiment and Finite Element Analysis. Buildings 2024, 14, 1972. https://doi.org/10.3390/buildings14071972
Wang X, Qi Y, Wang H, Chen D. Study on the Shear Behaviors and Capacity of Double-Sided Concrete-Encased Composite Steel Plate Shear Walls by Experiment and Finite Element Analysis. Buildings. 2024; 14(7):1972. https://doi.org/10.3390/buildings14071972
Chicago/Turabian StyleWang, Xintao, Yi Qi, Huafei Wang, and Dingxin Chen. 2024. "Study on the Shear Behaviors and Capacity of Double-Sided Concrete-Encased Composite Steel Plate Shear Walls by Experiment and Finite Element Analysis" Buildings 14, no. 7: 1972. https://doi.org/10.3390/buildings14071972
APA StyleWang, X., Qi, Y., Wang, H., & Chen, D. (2024). Study on the Shear Behaviors and Capacity of Double-Sided Concrete-Encased Composite Steel Plate Shear Walls by Experiment and Finite Element Analysis. Buildings, 14(7), 1972. https://doi.org/10.3390/buildings14071972