When Trees Are Not an Option: Perennial Vines as a Complementary Strategy for Mitigating the Summer Warming of an Urban Microclimate
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Vine Characteristics
3.2. Meteorological Data
3.3. Sun and Shade Temperature Differentials
3.4. The South-Facing Versus the West-Facing Wall
3.5. Degree Hour Difference (DHD)
3.6. Meteorological Conditions and DHD
− 0.158 × RH + 0.009 × (D × I) − 0.197 × (AT × W) + 0.621 × (D × W)
r2 = 0.736, p < 0.001
− 1.418 × W + 0.008(D × I) + 0.002(AT × I)
r2 = 0.852, p < 0.001
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobbie, S.E.; Baker, L.A.; Buyarski, C.; Nidzgorski, D.; Finlay, J.C. Decomposition of Tree Leaf Litter on Pavement: Implications for Urban Water Quality. Urban. Ecosyst. 2014, 17, 369–385. [Google Scholar] [CrossRef]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Akbari, H.; Taha, H. The Impact of Trees and White Surfaces on Residential Heating and Cooling Energy Use in Four Canadian Cities. Energy 1992, 17, 141–149. [Google Scholar] [CrossRef]
- Oke, T.R. City Size and the Urban Heat Island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Keith, L.; Meerow, S.; Wagner, T. Planning for Extreme Heat: A Review. J. Extrem. Events 2019, 6, 2050003. [Google Scholar] [CrossRef]
- Gao, Z.; Hou, Y.; Chen, W. Enhanced Sensitivity of the Urban Heat Island Effect to Summer Temperatures Induced by Urban Expansion. Environ. Res. Lett. 2019, 14, 094005. [Google Scholar] [CrossRef]
- Solecki, W.D.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the Heat Island Effect in Urban New Jersey. Environ. Hazards 2005, 6, 39–49. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Parker, J.H. Landscaping to Reduce the Energy Used in Cooling Buildings. J. For. 1983, 81, 82–105. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of Urban Heat Islands: Materials, Utility Programs, Updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Lin, J.; Brown, R. Integrating Microclimate into Landscape Architecture for Outdoor Thermal Comfort: A Systematic Review. Land 2021, 10, 196. [Google Scholar] [CrossRef]
- Turner, V.K.; French, E.M.; Dialesandro, J.; Middel, A.; M Hondula, D.; Weiss, G.B.; Abdellati, H. How Are Cities Planning for Heat? Analysis of United States Municipal Plans. Environ. Res. Lett. 2022, 17, 064054. [Google Scholar] [CrossRef]
- Kershaw, S.E.; Millward, A.A. A Spatio-Temporal Index for Heat Vulnerability Assessment. Environ. Monit. Assess. 2012, 184, 7329–7342. [Google Scholar] [CrossRef]
- McGeehin, M.A.; Mirabelli, M. The Potential Impacts of Climate Variability and Change on Temperature-Related Morbidity and Mortality in the United States. Environ. Health Perspect. 2001, 109, 185–189. [Google Scholar] [CrossRef]
- Cheng, C.S.; Campbell, M.; Li, Q.; Li, G.; Auld, H.; Day, N.; Pengelly, D.; Gingrich, S.; Klaassen, J.; MacIver, D.; et al. Differential and Combined Impacts of Extreme Temperatures and Air Pollution on Human Mortality in South-Central Canada. Part I: Historical Analysis. Air Qual. Atmos. Health 2008, 1, 209–222. [Google Scholar] [CrossRef]
- Qi, J.; He, B.-J. Urban Heat Mitigation Strategies. In Climate Change and Cooling Cities. Urban Sustainability; Cheshmehzangi, A., He, B., Sharifi, A., Matzarakis, A., Eds.; Springer: Singapore, 2023; pp. 21–44. [Google Scholar]
- Sawka, M.; Millward, A.A.; Mckay, J.; Sarkovich, M. Growing Summer Energy Conservation through Residential Tree Planting. Landsc. Urban. Plan. 2013, 113, 1–9. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a Forested Urban Park: What Is the Value of Allan Gardens to the City of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- De Kimpe, C.R.; Morel, J.L. Urban Soil Management: A Growing Concern. Soil Sci. 2000, 165, 31–40. [Google Scholar] [CrossRef]
- Ordóñez, C.; Sabetski, V.; Millward, A.A.; Steenberg, J.W.N.; Grant, A.; Urban, J. The Influence of Abiotic Factors on Street Tree Condition and Mortality in a Commercial-Retail Streetscape. Arboric. Urban For. 2018, 44, 133–145. [Google Scholar] [CrossRef]
- Ordóñez, C.; Duinker, P.N. Assessing the Vulnerability of Urban Forests to Climate Change. Environ. Rev. 2014, 22, 311–321. [Google Scholar] [CrossRef]
- Ordóñez, C.; Grant, A.; Millward, A.A.; Steenberg, J.; Sabetski, V. Developing Performance Indicators for Nature-Based Solution Projects in Urban Areas: The Case of Trees in Revitalized Commercial Spaces. Cities Environ. 2019, 12, 1. Available online: https://digitalcommons.lmu.edu/cate/vol12/iss1/1 (accessed on 15 November 2023).
- Riley, B. The State of the Art of Living Walls: Lessons Learned. Build. Environ. 2017, 114, 219–232. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical Greenery Systems for Energy Savings in Buildings: A Comparative Study between Green Walls and Green Facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef]
- Köhler, M. Green Facades—A View Back and Some Visions. Urban Ecosyst. 2008, 11, 423–436. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber: Portland, OR, USA, 2008. [Google Scholar]
- Irga, P.J.; Torpy, F.R.; Griffin, D.; Wilkinson, S.J. Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation. Sustainability 2023, 15, 6014. [Google Scholar] [CrossRef]
- Independent Electricity System Operator Demand Overview: Historical Demand. Available online: https://www.ieso.ca/en/Power-Data/Demand-Overview/Historical-Demand (accessed on 5 October 2023).
- Sherman, P.; Lin, H.; McElroy, M. Projected Global Demand for Air Conditioning Associated with Extreme Heat and Implications for Electricity Grids in Poorer Countries. Energy Build. 2022, 268, 112198. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Vertical Greening Systems and the Effect on Air Flow and Temperature on the Building Envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Bao, S.; Zou, S.; Zhao, M.; Chen, Q.; Li, B. Experimental Study on the Modular Vertical Greening Shading in Summer. Int. J. Environ. Res. Public Health 2022, 19, 11648. [Google Scholar] [CrossRef]
- Susorova, I.; Azimi, P.; Stephens, B. The Effects of Climbing Vegetation on the Local Microclimate, Thermal Performance, and Air Infiltration of Four Building Facade Orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S. Living Walls and Their Contribution to Improved Thermal Comfort and Carbon Emission Reduction: A Review. Build. Environ. 2016, 105, 82–94. [Google Scholar] [CrossRef]
- Hoyano, A. Climatological Uses of Plants for Solar Control and the Effects on the Thermal Environment of a Building. Energy Build. 1988, 11, 181–199. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal Evaluation of Vertical Greenery Systems for Building Walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Liu, X. An Experimental Evaluation of the Living Wall System in Hot and Humid Climate. Energy Build. 2013, 61, 298–307. [Google Scholar] [CrossRef]
- Nagdeve, S.S.; Manchanda, S.; Dewan, A. Thermal Performance of Indirect Green Façade in Composite Climate of India. Build. Environ. 2023, 230, 109998. [Google Scholar] [CrossRef]
- Kontoleon, K.J.; Eumorfopoulou, E.A. The Effect of the Orientation and Proportion of a Plant-Covered Wall Layer on the Thermal Performance of a Building Zone. Build. Environ. 2010, 45, 1287–1303. [Google Scholar] [CrossRef]
- Holm, D. Thermal Improvement by Means of Leaf Cover on External Walls—A Simulation Model. Energy Build. 1989, 14, 19–30. [Google Scholar] [CrossRef]
- Ip, K.; Lam, M.; Miller, A. Shading Performance of a Vertical Deciduous Climbing Plant Canopy. Build. Environ. 2010, 45, 81–88. [Google Scholar] [CrossRef]
- Susorova, I.; Angulo, M.; Bahrami, P.; Stephens, B. A Model of Vegetated Exterior Facades for Evaluation of Wall Thermal Performance. Build. Environ. 2013, 67, 1–13. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for Energy Saving in Buildings: A Review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef]
- Ckitchfield, W. Shoot Growth and Leaf Dimorphism in Boston Ivy (Parthenocissus Tricuspidata). Am. J. Bot. 1970, 57, 535–542. [Google Scholar] [CrossRef]
- Tenenbaum, F. Taylor’s Encyclopedia of Garden Plants; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- He, T.; Zhang, L.; Xin, H.; Deng, W. Morphology and Mechanics of the Adhesive Disc of Liana Parthenocissus Tricuspidata. Pure Appl. Chem. 2010, 82, 91–96. [Google Scholar] [CrossRef]
- Simpson, J.; McPherson, E. Potential of Tree Shade for Reducing Residential Energy Use in California. J. Arboric. 1996, 22, 10–18. [Google Scholar] [CrossRef]
- Givoni, B. Climate Considerations in Building and Urban Design; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- ANSI/ASHRAE Standard 55: 2017; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, NW, USA, 2017.
- Akbari, H.; Kurn, D.M.; Bretz, S.E.; Hanford, J.W. Peak Power and Cooling Energy Savings of Shade Trees. Energy Build. 1997, 25, 139–148. [Google Scholar] [CrossRef]
- Fountain, M.; Brager, G.; de Dear, R. Expectations of Indoor Climate Control. Energy Build. 1996, 24, 179–182. [Google Scholar] [CrossRef]
- Allison, P. Multiple Regression: A Primer; SAGE Publications: New York, NY, USA, 1998. [Google Scholar]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green Facade for Energy Savings in Buildings: The Influence of Leaf Area Index and Facade Orientation on the Shadow Effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef]
- Noodén, L.; Leopold, A. (Eds.) Senescence and Aging in Plants; Elsevier: Amsterdam, The Netherlands, 1988; ISBN 9780125209205. [Google Scholar]
- Jim, C.Y. Urban Soil Characteristics and Limitations for Landscape Planting in Hong Kong. Landsc. Urban Plan. 1998, 40, 235–249. [Google Scholar] [CrossRef]
- DeepRoot Soil Volume Minimums for Street Trees Organized by State/Province. Available online: https://www.deeproot.com/blog/blog-entries/soil-volume-minimums-organized-by-stateprovince-2/ (accessed on 1 November 2023).
- DeepRoot Soil Volume Recommendations for Vines, Hedges, and Palms. Available online: https://www.deeproot.com/blog/blog-entries/soil-volume-recommendations-for-vines-hedges-and-palms/ (accessed on 1 November 2023).
- Lu, J.W.; Svendsen, E.S.; Campbell, L.K.; Greenfeld, J.; Braden, J. Biological, Social, and Urban Design Factors Affecting Young Street Tree Mortality in New York City. Cities Environ. (CATE) 2011, 3, 5. [Google Scholar]
- Akbari, H. Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Butry, D.T. The Value of Shade: Estimating the Effect of Urban Trees on Summertime Electricity Use. Energy Build. 2009, 41, 662–668. [Google Scholar] [CrossRef]
- Tams, L.; Paton, E.N.; Kluge, B. Impact of Shading on Evapotranspiration and Water Stress of Urban Trees. Ecohydrology 2023, 16, e2556. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Fuina, S.; Campiotti, C.A.; Mugnozza, G.S.; Schettini, E. Evaluation of Wall Surface Temperatures in Green Facades. In Proceedings of the Institution of Civil Engineers—Engineering Sustainability; ICE Publishing: Leeds, UK, 2017; Volume 170, pp. 334–344. [Google Scholar]
- Safikhani, T.; Baharvand, M. Evaluating the Effective Distance between Living Walls and Wall Surfaces. Energy Build. 2017, 150, 498–506. [Google Scholar] [CrossRef]
- Blanco, I.; Convertino, F. Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach. Sustainability 2023, 15, 9981. [Google Scholar] [CrossRef]
- Millward, A.A.; Torchia, M.; Laursen, A.E.; Rothman, L.D. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate. Environ. Manag. 2014, 53, 1043–1057. [Google Scholar] [CrossRef]
- Ottelé, M.; Perini, K. Comparative Experimental Approach to Investigate the Thermal Behaviour of Vertical Greened Façades of Buildings. Ecol. Eng. 2017, 108, 152–161. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Haas, E.; Raiteri, R. Greening the Building Envelope, Facade Greening and Living Wall Systems. Open J. Ecol. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green Roofs and Facades: A Comprehensive Review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Taylor, J.E.; Emmett, M.R. What’s ‘Cool’ in the World of Green Façades? How Plant Choice Influences the Cooling Properties of Green Walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Narimani, N.; Karimi, A.; Brown, R.D. Effects of Street Orientation and Tree Species Thermal Comfort within Urban Canyons in a Hot, Dry Climate. Ecol. Inform. 2022, 69, 101671. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A. Mapping the Physiologically Equivalent Temperature in Urban Areas Using Artificial Neural Network. Landsc. Urban Plan. 2016, 150, 1–9. [Google Scholar] [CrossRef]
May | June | July | August | September | October | |
---|---|---|---|---|---|---|
South (Shade to Sun) | (-) 2.6 ** | (-) 2.8 * | (-) 3.4 *** | (-) 3.9 *** | (-) 3.7 ** | ns |
West (Shade to Sun) | (-) 3.1 * | (-) 3.0 * | (-) 4.0 *** | (-) 3.5 *** | ns | ns |
Differential (South to West) | ns | ns | ns | ns | (-) 1.8 *** | (-) 1.2 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millward, A.A.; Blake, M. When Trees Are Not an Option: Perennial Vines as a Complementary Strategy for Mitigating the Summer Warming of an Urban Microclimate. Buildings 2024, 14, 416. https://doi.org/10.3390/buildings14020416
Millward AA, Blake M. When Trees Are Not an Option: Perennial Vines as a Complementary Strategy for Mitigating the Summer Warming of an Urban Microclimate. Buildings. 2024; 14(2):416. https://doi.org/10.3390/buildings14020416
Chicago/Turabian StyleMillward, Andrew A., and Michelle Blake. 2024. "When Trees Are Not an Option: Perennial Vines as a Complementary Strategy for Mitigating the Summer Warming of an Urban Microclimate" Buildings 14, no. 2: 416. https://doi.org/10.3390/buildings14020416
APA StyleMillward, A. A., & Blake, M. (2024). When Trees Are Not an Option: Perennial Vines as a Complementary Strategy for Mitigating the Summer Warming of an Urban Microclimate. Buildings, 14(2), 416. https://doi.org/10.3390/buildings14020416