Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China
Abstract
1. Introduction
1.1. Literature Review
1.1.1. Urban Morphology and Environmental Performance
1.1.2. Influence of Environmental Performance on Older Adults
1.1.3. Multi-Objective Optimization and Urban Morphology
1.2. Innovation and Research Objectives
2. Research Methods
2.1. Methodological Framework
2.2. Study Area
2.3. Variable Settings
2.3.1. Extraction and Simplification of Building Types
2.3.2. Parametric Modeling and Block Morphology Generation
2.4. Performance Simulation of Block Form
2.4.1. Performance Indicators
- (1)
- Outdoor Thermal Comfort in Winter and Summer
- (2)
- SH
2.4.2. Simulation Parameter Settings and Calculation
- (1)
- UTCI for summer and winter
- (2)
- SH
2.5. MOO
2.6. Pearson Correlation Analysis and K-Means Clustering
3. Results and Discussion
3.1. Trend Analysis of the Optimization Process
3.2. Distribution of Feasible and Pareto Solutions
3.3. Analysis of Building Types
3.4. Pearson’s Correlation Analysis
3.5. Clustering Results
4. Conclusions
- (1)
- Impact of block form on outdoor environmental performance: UTCI-S was significantly positively correlated with DB, BD, SC, and CVH, and significantly negatively correlated with AH, FAR, VAR, MA, AV, and OSR. UTCI-W was significantly positively correlated with AH, FAR, VAR, MA, and AV, and significantly negatively correlated with DB, PO, SC, and CVH. SH was significantly positively correlated with DB, PO, OSR, and CVH, and significantly negatively correlated with AH, BD, FAR, SC, VAR, MA, and AV.
- (2)
- Building layout patterns: high-rise point and slab buildings concentrated in the northwest, along with mid-rise and low-rise courtyard-style and point buildings distributed in the southeast, reduce summer heat accumulation, enhance winter sunlight access, and mitigate the impact of northwestern winds, thereby significantly improving the outdoor environment for elderly residents.
- (3)
- Building form patterns: In the optimized solutions, courtyard buildings (C-1, C-2, and C-3) were concentrated in the northern part of the block, whereas point buildings (P-1, P-2, and P-3) were concentrated in the southern part. These building forms are beneficial for improving summer thermal comfort, winter thermal comfort, and daylight duration. Conversely, mid-rise and high-rise slab buildings (S-3 and S-2) are less advantageous for these three outdoor environmental performances.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Written-out form |
UTCI | Universal Thermal Climate Index (°C) |
UTCI-S | Universal Thermal Climate Index in summer (°C) |
UTCI-W | Universal Thermal Climate Index in winter (°C) |
SH | Sunlight hour (h) |
AH | Average Building Height (m) |
StdH | Standard Deviation of Building Height (m) |
BD | Building Density (%) |
DB | Distance Between Buildings |
FAR | Floor Area Ratio |
VAR | Volume Area Ratio (%) |
SCD | Space Crowding Density |
PO | Porosity (%) |
SC | Shape Coefficient |
PAR | Perimeter Area Ratio |
MA | Mean Building Area (m2) |
SA | Standard Deviation of Building Area (m2) |
AV | Average Building Volume (m3) |
SV | Volume Standard Deviation (m3) |
OSR | Open Space Ratio (%) |
CVH | Coefficient of Variation for Building Height |
MOO | Multi-objective Optimization |
SVF | Sky View Factor |
NSGA-II | Non-dominated Sorting Genetic Algorithm II |
SSE | Sum of Squared errors |
TMRT | Mean Radiant Temperature (°C) |
SD | Standard Deviation |
References
- Aging and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 7 August 2024).
- Population Division World Population Prospects 2024 (United Nations). Available online: https://population.un.org/wpp/ (accessed on 6 August 2024).
- Total Population Growth Is Maintained and the Level of Urbanisation Is Steadily Increasing. National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/xxgk/jd/sjjd2020/202201/t20220118_1826609.html (accessed on 6 August 2024). (In Chinese)
- Zhong, S.; Lee, C.; Lee, H. The role of community environments in older adults’ intergenerational and peer social interactions. Cities 2022, 129, 103785. [Google Scholar] [CrossRef]
- Dugan, E.; Porell, F.; Silverstein, N.M.; Lee, C.M. Healthy aging data reports: Measures of community health to identify disparities and spur age-friendly progress. Gerontologist 2022, 62, e28–e38. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Mei, T. Developing the age-friendly community parks survey for older adults: Assessing aging environment. Urban For. Urban Green. 2024, 99, 128424. [Google Scholar] [CrossRef]
- Wen, C.; Albert, C.; Von Haaren, C. The elderly in green spaces: Exploring requirements and preferences concerning nature-based recreation. Sustain. Cities Soc. 2018, 38, 582–593. [Google Scholar] [CrossRef]
- Subramanian, D.; Jana, A. Assessing urban recreational open spaces for the elderly: A case of three Indian cities. Urban For. Urban Green. 2018, 35, 115–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Wu, Z.; Liu, Y.; Yang, Z. Using space syntax in close interaction analysis between the elderly: Towards a healthier urban environment. Buildings 2023, 13, 1456. [Google Scholar] [CrossRef]
- Cui, Y.-T.; Zhang, G.-Z. Optimizing community green roof spaces in high-density cities: A K-modes clustering algorithm based analysis of resident preferences and spatial configuration. J. Asian Archit. Build. Eng. 2024. [Google Scholar] [CrossRef]
- Jiao, Y.; Yu, Y.; Yu, H.; Wang, F. The impact of thermal environment of transition spaces in elderly-care buildings on thermal adaptation and thermal behavior of the elderly. Build. Environ. 2023, 228, 109871. [Google Scholar] [CrossRef]
- Long, X.; Che Din, N.; Lei, Y.; Mahyuddin, N. The restorative effects of outdoor soundscapes in nursing homes for elderly individuals. Build. Environ. 2023, 242, 110520. [Google Scholar] [CrossRef]
- Carstens, D.Y. Site Planning and Design for the Elderly: Issues, Guidelines, and Alternatives. 1993. Available online: https://www.semanticscholar.org/paper/Site-Planning-and-Design-for-the-Elderly:-Issues,-Carstens/29cc4cf778958dc14b56520766745e809b790e19 (accessed on 12 August 2024).
- Cho, M.E.; Kim, M.J.; Kim, J.T. A smart workspace supporting a healthy life in pre-elderly households. Indoor Built Environ. 2013, 22, 280–288. [Google Scholar] [CrossRef]
- Tsoulou, I.; Andrews, C.J.; He, R.; Mainelis, G.; Senick, J. Summertime thermal conditions and senior resident behaviors in public housing: A case study in Elizabeth, NJ, USA. Build. Environ. 2020, 168, 106411. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Qin, B. Quantity or quality? Exploring the association between public open space and mental health in urban China. Landsc. Urban Plan. 2021, 213, 104128. [Google Scholar] [CrossRef]
- Wang, Z.; Shepley, M.M. Can aging-in-place be promoted by the built environment near home for physical activity: A case study of non-Hispanic White elderly in Texas. J. Hous. Built. Environ. 2018, 33, 749–766. [Google Scholar] [CrossRef]
- Suzuki, T.; Murase, S. Influence of outdoor activity and indoor activity on cognition decline: Use of an infrared sensor to measure activity. Telemed J. E. Health 2010, 16, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Ju, H. The relationship between physical activity, meaning in life, and subjective vitality in community-dwelling older adults. Arch. Gerontol. Geriatr. 2017, 73, 120–124. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, G.; Lv, Z.; Wen, S.; Bi, S.; Wang, W. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson’s disease. J. Zhejiang Univ. Sci. 2014, 15, 923–927. [Google Scholar] [CrossRef]
- Cedervall, Y.; Torres, S.; Åberg, A.C. Maintaining well-being and selfhood through physical activity: Experiences of people with mild Alzheimer’s disease. Aging Ment. Health 2015, 19, 679–688. [Google Scholar] [CrossRef]
- Yung, E.H.K.; Wang, S.; Chau, C. Thermal perceptions of the elderly, use patterns and satisfaction with open space. Landsc. Urban Plan. 2019, 185, 44–60. [Google Scholar] [CrossRef]
- Wu, H.-W.; Kumar, P.; Cao, S.-J. Implementation of green infrastructure for improving the building environment of elderly care centres. J. Build. Eng. 2022, 54, 104682. [Google Scholar] [CrossRef]
- Ma, X.; Song, L.; Hong, B.; Li, Y.; Li, Y. Relationships between EEG and thermal comfort of elderly adults in outdoor open spaces. Build. Environ. 2023, 235, 110212. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Li, L.; Wang, R.; Wang, Y. Study on thermal comfort of elderly in community parks: An exploration from the perspectives of different activities and ages. Build. Environ. 2023, 246, 111001. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Luo, X.; Luo, N.; Lee, S.H. Ten questions on urban building energy modeling. Build. Environ. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Li, J.; You, W.; Ding, W. Exploring urban space quantitative indicators associated with outdoor ventilation potential. Sustain. Cities Soc. 2022, 79, 103696. [Google Scholar] [CrossRef]
- Liu, K.; Xu, X.; Huang, W.; Zhang, R.; Kong, L.; Wang, X. A multi-objective optimization framework for designing urban block forms considering daylight, energy consumption, and photovoltaic energy potential. Build. Environ. 2023, 242, 110585. [Google Scholar] [CrossRef]
- Zuo, J.; Ma, J.; Lin, T.; Dong, J.; Lin, M.; Luo, J. Quantitative valuation of green roofs’ cooling effects under different urban spatial forms in high-density urban areas. Build. Environ. 2022, 222, 109367. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Pisello, A.L.; Piselli, C.; Fabiani, C.; Cotana, F.; Santamouris, M. How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy. Renew. Energy 2018, 127, 920–935. [Google Scholar] [CrossRef]
- Zhang, M.; You, W.; Qin, Q.; Peng, D.; Hu, Y.; Gao, Z.; Buccolieri, R. Investigation of typical residential block typologies and their impact on pedestrian-level microclimate in summers in Nanjing, China. Front. Archit. Res. 2022, 11, 278–296. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Jeon, G.; Park, Y.; Guldmann, J.-M. Impacts of urban morphology on seasonal land surface temperatures: Comparing grid- and block-based approaches. ISPRS Int. J. Geoinf. 2023, 12, 482. [Google Scholar] [CrossRef]
- Athamena, K. Microclimatic coupling to assess the impact of crossing urban form on outdoor thermal comfort in temperate oceanic climate. Urban Clim. 2022, 42, 101093. [Google Scholar] [CrossRef]
- Li, J.; Niu, J.; Huang, T.; Mak, C.M. Dynamic effects of frequent step changes in outdoor microclimate environments on thermal sensation and dissatisfaction of pedestrian during summer. Sustain. Cities Soc. 2022, 79, 103670. [Google Scholar] [CrossRef]
- Qaoud, R.; Adel, B.; Sayad, B.; Alkama, D.; Attia, S. Assessing the influence of neighborhood urban form on outdoor thermal conditions in the hot dry city of Biskra, Algeria. Ain Shams Eng. J. 2023, 14, 102525. [Google Scholar] [CrossRef]
- Sun, C.; Lian, W.; Liu, L.; Dong, Q.; Han, Y. The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Build. Environ. 2022, 222, 109342. [Google Scholar] [CrossRef]
- Darbani, E.S.; Rafieian, M.; Parapari, D.M.; Guldmann, J.-M. Urban design strategies for summer and winter outdoor thermal comfort in arid regions: The case of historical, contemporary and modern urban areas in Mashhad, Iran. Sustain. Cities Soc. 2023, 89, 104339. [Google Scholar] [CrossRef]
- Cui, Y.; Gong, Q.; Huang, C.; Guo, F.; Li, W.; Wang, Y.; Cheng, X. The relationship between sunlight exposure duration and depressive symptoms: A cross-sectional study on elderly Chinese women. PLoS ONE 2021, 16, e0254856. [Google Scholar] [CrossRef]
- Šprah, N.; Potočnik, J.; Košir, M. The influence of façade colour, glazing area and geometric configuration of urban canyon on the spectral characteristics of daylight. Build. Environ. 2024, 251, 111214. [Google Scholar] [CrossRef]
- Lu, M.; Du, J. Dynamic evaluation of daylight availability in a highly-dense Chinese residential area with a cold climate. Energy Build. 2019, 193, 139–159. [Google Scholar] [CrossRef]
- Wang, S.; Yi, Y.K.; Liu, N. Multi-objective optimization (MOO) for high-rise residential buildings’ layout centered on daylight, visual, and outdoor thermal metrics in China. Build. Environ. 2021, 205, 108263. [Google Scholar] [CrossRef]
- Kaleshwarwar, A.; Bahadure, S. Assessment of the solar energy potential of diverse urban built forms in Nagpur, India. Sustain. Cities Soc. 2023, 96, 104681. [Google Scholar] [CrossRef]
- Norouziasas, A.; Pilehchi Ha, P.; Ahmadi, M.; Rijal, H.B. Evaluation of urban form influence on pedestrians’ wind comfort. Build. Environ. 2022, 224, 109522. [Google Scholar] [CrossRef]
- Yildirim, Y.; Arefi, M. Seeking the nexus between building acoustics and urban form: A systematic review. Curr. Pollut. Rep. 2023, 9, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Liu, Y.; Mu, T.; Ye, Y.; Xu, C. Determining the association between different living arrangements and depressive symptoms among over-65-year-old people: The moderating role of outdoor activities. Front. Public Health. 2022, 10, 954416. [Google Scholar] [CrossRef] [PubMed]
- Petkova, E.P.; Dimitrova, L.K.; Sera, F.; Gasparrini, A. Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria. Int. J. Biometeorol. 2021, 65, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Guergova, S.; Dufour, A. Thermal sensitivity in the elderly: A review. Ageing Res. Rev. 2011, 10, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Sun, S.; Tang, R.; Chan, K.-P.; Tian, L. Pneumonia hospitalization risk in the elderly attributable to cold and hot temperatures in Hong Kong, China. Am. J. Epidemiol. 2016, 184, 570–578. [Google Scholar] [CrossRef]
- Low, C.T.; Lai, P.C.; Yeung, P.S.S.; Siu, A.Y.C.; Leung, K.T.Y.; Wong, P.P.Y. Temperature and age–gender effects on out-of-hospital cardiac arrest cases. Hong Kong J. Emerg. Med. 2018, 25, 83–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Z.; Wang, S.; Hu, J.; Xiao, J.; Li, X.; Liu, T.; Zeng, W.; Guo, L.; Du, Q.; et al. Morbidity burden of respiratory diseases attributable to ambient temperature: A case study in a subtropical city in China. Environ. Health 2019, 18, 89. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Laden, F.; James, P.; Sabath, M.B.; Wu, X.; Schwartz, J.; Dominici, F.; Zanobetti, A.; Hart, J.E. Effects of long-term average temperature on cardiovascular disease hospitalizations in an American elderly population. Environ. Res. 2023, 216, 114684. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Ho, T.-J.; Wang, Y.-C. Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environ. Res. 2011, 111, 1156–1163. [Google Scholar] [CrossRef]
- Ghada, W.; Estrella, N.; Ankerst, D.P.; Menzel, A. Universal thermal climate index associations with mortality, hospital admissions, and road accidents in Bavaria. PLoS ONE 2021, 16, e0259086. [Google Scholar] [CrossRef]
- Romaszko, J.; Dragańska, E.; Cymes, I.; Drozdowski, M.; Gromadziński, L.; Glińska-Lewczuk, K. Are the levels of uric acid associated with biometeorological conditions? Sci. Total Environ. 2022, 819, 152020. [Google Scholar] [CrossRef] [PubMed]
- Elmadfa, I.; Meyer, A.L. Body composition, changing physiological functions and nutrient requirements of the elderly. Ann. Nutr. Metab. 2008, 52, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Düzgün, G.; Durmaz Akyol, A. Effect of natural sunlight on sleep problems and sleep quality of the elderly staying in the nursing home. Holist. Nurs. Pract. 2017, 31, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Luan, D.; Wang, X.; Xin, S.; Liu, Y.; Li, J. Effect of sun exposure on cognitive function among elderly individuals in Northeast China. CIA 2018, 13, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Okan, F.; Zİncİr, H.; Devecİ, K. The effect of sun light exposure to the level of vitamin D in elderly people living in nursing home. J. Clin. Densitom. 2022, 2, 261–271. [Google Scholar] [CrossRef]
- Cheng, J.; Meng, S.; Lee, J.; Kwak, H.-B.; Liu, Y. Effects of walking and sun exposure on bone density and balance in elderly with osteopenia. J. Bone Miner. Metab. 2022, 40, 528–534. [Google Scholar] [CrossRef]
- Kööts, L.; Realo, A.; Allik, J. The influence of the weather on affective experience. J. Individ. Differ. 2011, 32, 74–84. [Google Scholar] [CrossRef]
- Wu, H.-W.; Kumar, P.; Cao, S.-J. The role of roadside green infrastructure in improving air quality in and around elderly care centres in Nanjing, China. Atmos. Environ. 2024, 332, 120607. [Google Scholar] [CrossRef]
- Ferrari, U.; Exner, T.; Wanka, E.R.; Bergemann, C.; Meyer-Arnek, J.; Hildenbrand, B.; Tufman, A.; Heumann, C.; Huber, R.M.; Bittner, M.; et al. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany. Int. J. Biometeorol. 2012, 56, 137–143. [Google Scholar] [CrossRef]
- Cui, P.; Zhang, J.; Li, T.T. Research on acoustic environment in the building of nursing homes based on sound preference of the elderly people: A case study in Harbin, China. Front. Psychol. 2021, 12, 707457. [Google Scholar] [CrossRef]
- Bre, F.; Roman, N.; Fachinotti, V.D. An efficient metamodel-based method to carry out multi-objective building performance optimizations. Energy Build. 2020, 206, 109576. [Google Scholar] [CrossRef]
- Bhattacharjya, S.; Chakraborty, S. An improved robust multi-objective optimization of structure with random parameters. Adv. Struct. Eng. 2018, 21, 1597–1607. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Xi, T. A review of thermal comfort evaluation and improvement in urban outdoor spaces. Buildings 2023, 13, 3050. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, M.; Ouyang, Q.; Huang, L.; Cao, B. Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Build. Environ. 2015, 91, 5–14. [Google Scholar] [CrossRef]
- Attia, S.; Hamdy, M.; O’Brien, W.; Carlucci, S. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy Build. 2013, 60, 110–124. [Google Scholar] [CrossRef]
- Mandal, B.; Roy, P.K. Multi-Objective Optimal Power Flow Using Grasshopper Optimization Algorithm. Available online: https://doi.org/10.1002/oca.3065 (accessed on 6 August 2024).
- Alothaimeen, I.; Arditi, D.; Türkakın, O.H. Multi-objective optimization for LEED—New construction using BIM and genetic algorithms. Autom. Constr. 2023, 149, 104807. [Google Scholar] [CrossRef]
- Rutten, D. Galapagos: On the logic and limitations of generic solvers. Archit. Des. 2013, 83, 132–135. [Google Scholar] [CrossRef]
- Keskas, I.; Bourbia, F.; Mohammadi, M.; Calautit, J. Geo-solar segmentation mechanism: An early design stage method for building solar morphing. Sol. Energy 2022, 246, 302–319. [Google Scholar] [CrossRef]
- Evolutionary Engine for Grasshopper3D, Wallacei. Available online: https://www.wallacei.com (accessed on 6 August 2024).
- Touloupaki, E.; Theodosiou, T. Performance simulation integrated in parametric 3D modeling as a method for early stage design optimization—A review. Energies 2017, 10, 637. [Google Scholar] [CrossRef]
- Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput. 2018, 17, 585–609. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artif. Intell. Rev. 2023, 56, 15217–15270. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Ladybug Tools|Ladybug. Available online: https://www.ladybug.tools/ladybug.html (accessed on 6 August 2024).
- Ladybug Tools|Butterfly. Available online: https://www.ladybug.tools/butterfly.html (accessed on 6 August 2024).
- TT Toolbox, Food4Rhino. 2013. Available online: https://www.food4rhino.com/en/app/tt-toolbox (accessed on 6 August 2024).
- Beijing Elderly Career Development Report 2021. Beijing Municipal Health Commission. Available online: https://wjw.beijing.gov.cn/wjwh/ztzl/lnr/lljkzc/lllnfzbg/ (accessed on 6 August 2024).
- China Climate Bulletin. China Meteorological Administration, 2022. Available online: https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202303/t20230324_5396394.html (accessed on 6 August 2024).
- Joshi, M.Y.; Rodler, A.; Musy, M.; Guernouti, S.; Cools, M.; Teller, J. Identifying urban morphological archetypes for microclimate studies using a clustering approach. Build. Environ. 2022, 224, 109574. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, H.; Xue, B.; Li, W. Urban morphology in China: Dataset development and spatial pattern characterization. Sustain. Cities Soc. 2021, 7, 102981. [Google Scholar] [CrossRef]
- Geng, X.; Xie, D.; Gou, Z. Optimizing urban block morphologies for net-zero energy cities: Exploring photovoltaic potential and urban design prototype. Build. Simul. 2024, 17, 607–624. [Google Scholar] [CrossRef]
- Naskar, P.R.; Mohapatra, M.; Singh, G.P.; Das, U. Spatiotemporal variations of UTCI based discomfort over India. J. Earth Syst. Sci. 2024, 133, 47. [Google Scholar] [CrossRef]
- Ohashi, Y.; Katsuta, T.; Tani, H.; Okabayashi, T.; Miyahara, S.; Miyashita, R. Human cold stress of strong local-wind “Hijikawa-arashi” in Japan, based on the UTCI index and thermo-physiological responses. Int. J. Biometeorol. 2018, 62, 1241–1250. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Twardosz, R. Secular changes (1826–2021) of human thermal stress according to UTCI in Kraków (southern Poland). Int. J. Climatol. 2023, 43, 4220–4230. [Google Scholar] [CrossRef]
- Kuchcik, M. Mortality and thermal environment (UTCI) in Poland—Long-term, multi-city study. Int. J. Biometeorol. 2021, 65, 1529–1541. [Google Scholar] [CrossRef]
- BlueCFD-Core 2.3-1. Available online: https://bluecfd.github.io/Core/UserGuide/ (accessed on 21 October 2024).
- Huang, C.; Zhang, G.; Yao, J.; Wang, X.; Calautit, J.K.; Zhao, C.; An, N.; Peng, X. Accelerated environmental performance-driven urban design with generative adversarial network. Build. Environ. 2022, 224, 109575. [Google Scholar] [CrossRef]
Type | S-1 | S-2 | S-3 |
---|---|---|---|
Slab | |||
Parameters (m) | |||
Floor | 1–3 | 4–9 | 10–18 |
Type | C-1 | C-2 | C-3 |
Courtyard | |||
Parameters (m) | |||
Floor | 13 | 4–9 | 4–9 |
Type | P-1 | P-2 | P-3 |
Point | |||
Parameters (m) | |||
Floor | 1–3 | 10–18 | 10–18 |
Block Feature Parameter | Formula | Number | Reference |
---|---|---|---|
AH (m) | (1) | [85] | |
StdH (m) | (2) | [86] | |
DB (m) | (3) | [86] | |
BD (%) | (4) | [86] | |
FAR | (5) | [85] | |
VAR (m) | (6) | [86] | |
SCD | (7) | [87] | |
PO (%) | (8) | [87] | |
SC | (9) | [78] | |
PAR | (10) | [85] | |
MA (m2) | (11) | [85] | |
SA (m2) | (12) | [85] | |
AV (m3) | (13) | [87] | |
SV (m3) | (14) | [86] | |
OSR (%) | (15) | [87] | |
CVH | (16) | [87] |
Parameter | Simulation Period | Plugin | Setting |
---|---|---|---|
Weather data | — | — | EPW files· |
Sunlight hours | 1 January to 31 December | Ladybug | Monitoring grid spacing: 2 m |
Monitoring grid placement: Out-door ground surface | |||
Thermal comfort (Summer) | Extreme hot week | Butterfly | Monitoring Points high: 1.5 m |
Number of monitoring points: 225 (15 × 15) | |||
Surface roughness length: 0.5 | |||
Atmospheric boundary layer thickness: 550 m | |||
Boundary dimensions of the wind tunnel computational domain: 15H × 10H × 5H | |||
Ladybug | Number of monitoring points: 225 (15 × 15) | ||
Monitoring Points high: 1.5 m | |||
Wind speed: 1.8 m/s | |||
Thermal comfort (Winter) | Extreme cold week | Butterfly | Monitoring Points high: 1.5 m |
Number of monitoring points: 225 (15 × 15) | |||
Surface roughness length: 0.5 | |||
Atmospheric boundary layer thickness: 550 m | |||
Boundary dimensions of the wind tunnel computational domain: 15H × 10H × 5H | |||
Ladybug | Number of monitoring points: 225 (15 × 15) | ||
Monitoring Points high: 1.5 m | |||
Wind speed: 3 m/s |
Generation Size | Generation Count | Crossover Probability | Mutation Distribution Index |
---|---|---|---|
50 | 60 | 0.9 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Zhang, L.; Ding, X.; Zhang, Z.; Qi, Z.; Jiang, L.; Bu, D. Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China. Buildings 2024, 14, 3770. https://doi.org/10.3390/buildings14123770
Yan H, Zhang L, Ding X, Zhang Z, Qi Z, Jiang L, Bu D. Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China. Buildings. 2024; 14(12):3770. https://doi.org/10.3390/buildings14123770
Chicago/Turabian StyleYan, Hainan, Lu Zhang, Xinyang Ding, Zhaoye Zhang, Zizhuo Qi, Ling Jiang, and Deqing Bu. 2024. "Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China" Buildings 14, no. 12: 3770. https://doi.org/10.3390/buildings14123770
APA StyleYan, H., Zhang, L., Ding, X., Zhang, Z., Qi, Z., Jiang, L., & Bu, D. (2024). Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China. Buildings, 14(12), 3770. https://doi.org/10.3390/buildings14123770