Impacts of Rooftop Photovoltaics on the Urban Thermal Microclimate: Metrological Investigations
Abstract
:1. Introduction
2. Methods
2.1. Temperature Analyses
2.2. Energy Balances
- Energy Balance Reference Roof
- Latent Heat Fluxes
- Ground Heat Fluxes
3. Measurement Concept
3.1. Measurement Site
3.2. Temperature Analyses
3.3. Energy Balances
- Measurement Concept Energy Balance Reference Roof
- Measurement Concept Energy Balance PV Roof
3.4. Measurement Period and Data Processing
4. Results
4.1. Temperature Analyses
4.1.1. Ambient Air Temperatures
4.1.2. Photovoltaic Module Temperatures
4.2. Energy Balances
4.2.1. Radiative Fluxes
4.2.2. Non-Radiative Fluxes
5. Discussion
5.1. Interpretation of the Results
- Temperature Analyses
- Energy Balanc—Radiative fluxes
- Energy Balance—Non-radiative fluxes
5.2. Methods
- Temperature Analyses
- Energy Balances
- Measurements
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Variables and parameters | ||
cn | constant | - |
cm | constant | - |
a | experimental coefficient | - |
b | experimental coefficient | - |
cd | heat capacity of the dry soil | J/kg°C |
cs | soil heat capacity | J/m³°C |
cW | heat capacity of water | J/kg°C |
D | depth of the heat flux plate | m |
ea | average vapor pressure | kPa |
es | average saturation vapor pressure | kPa |
G | soil heat flux density | MJ/m2h |
GT | global irradiation | W/m2 |
hc | heat transfer coefficient | - |
hc0 | film heat transfer coefficient | - |
hn | natural convection coefficient | - |
Q* | net radiation | W/m2 |
qc | convective heat | W/m2 |
qc,PV,dn | convective heat beneath the PV modules | W/m2 |
qc,PV,roof | convective heat from the roof beneath the PV modules | W/m2 |
qc,PV,up | convective heat above the PV modules | W/m2 |
qel,PV | electricity produced by the PV module | W/m2 |
qhfp | soil heat flux measured by a heat flux plate | W/m2 |
qla | latent heat | W/m2 |
qlw↓ | downwelling longwave radiation | W/m2 |
qlw↑ | upwelling longwave radiation | W/m2 |
qsoil | ground heat | W/m2 |
qsubstrate | average stored heat within the substrate above the heat flux plate | W/m2 |
qsw↓ | downwelling shortwave radiation | W/m2 |
qsw↑ | upwelling shortwave radiation | W/m2 |
Rf | experimental coefficient | - |
Ta | ambient air temperature | °C |
Tc | cell temperature | °C |
Tfront | front-surface module temperature | °C |
Ti | current soil temperature | °C |
Ti-1 | soil temperature of the previous time step | °C |
TM | back-surface module temperature | °C |
Tsoil,surf | temperature roof surface | °C |
t | time interval | s |
v | average hourly local wind velocity | m/s |
ρb | bulk density | kg/m3 |
θ | water content of the soil | m3 |
ρW | density of water | kg/m3 |
ƞmodule | module efficiency | % |
γ | psychrometric constant | kPa/°C |
ET | evapotranspiration | |
PV | photovoltaic | |
REF | reference roof | |
UHI | urban heat island |
References
- Hepf, C.; Bausch, K.; Lauss, L.; Koth, S.C.; Auer, T. Impact of Dynamic Emission Factors of the German Electricity Mix on the Greenhouse Gas Balance in Building Operation. Buildings 2022, 12, 2215. [Google Scholar] [CrossRef]
- Hepf, C.; Overhoff, L.; Koth, S.C.; Gabriel, M.; Briels, D.; Auer, T. Impact of a Weather Predictive Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand. Buildings 2023, 13, 996. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Stone, B.; Rodgers, M.O. Urban Form and Thermal Efficiency: How the Design of Cities Influences the Urban Heat Island Effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Kuttler, W. Klimawandel im urbanen Bereich: Teil 1, Wirkungen. Environ. Sci. Eur. 2011, 23, 1–12. [Google Scholar]
- Fassbender, E.; Hemmerle, C. Interdependencies Between Photovoltaics and Thermal Microclimate. In Advanced Materials in Smart Building Skins for Sustainability; Wang, J., Shi, D., Song, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 189–206. ISBN 978-3-031-09694-5. [Google Scholar]
- Sailor, D.J.; Anand, J.; King, R.R. Photovoltaics in the built environment: A critical review. Energy Build. 2021, 253, 111479. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef]
- Genchi, Y.; Ishisaki, M.; Ohashi, Y.; Takahashi, H.; Inaba, A. Impacts of large-scale photovoltaic panel installation on the heat island effect in Tokyo. In Proceedings of the Fifth Conference on the Urban Climate, Łódź, Poland, 1–5 September 2003. [Google Scholar]
- Wang, Y.; Tian, W.; Zhu, L.; Ren, J.; Liu, Y.; Zhang, J.; Yuan, B. Interactions between Building Integrated Photovoltaics and Microclimate in Urban Environments. Energy Build. 2006, 128, 168–172. [Google Scholar] [CrossRef]
- Masson, V.; Bonhomme, M.; Salagnac, J.-L.; Briottet, X.; Lemonsu, A. Solar panels reduce both global warming and urban heat island. Front. Environ. Sci. 2014, 2, 14. [Google Scholar] [CrossRef]
- Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand. Bound. Layer Meteorol. 2016, 161, 203–221. [Google Scholar] [CrossRef]
- Taha, H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas. Sol. Energy 2013, 91, 358–367. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. J. Appl. Meteorol. Climatol. 2019, 58, 989–1006. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, X.; Lv, Q.; Li, Z.; Li, P. Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas. Renew. Energy 2021, 174, 157–169. [Google Scholar] [CrossRef]
- Wu, W.; Yue, S.; Zhou, X.; Guo, M.; Wang, J.; Ren, L.; Yuan, B. Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity. Sustainability 2020, 12, 3403. [Google Scholar] [CrossRef]
- Berardi, U.; Graham, J. Investigation of the impacts of microclimate on PV energy efficiency and outdoor thermal comfort. Sustain. Cities Soc. 2020, 62, 102402. [Google Scholar] [CrossRef]
- Brito, M.C. Assessing the Impact of Photovoltaics on Rooftops and Facades in the Urban Microclimate. Energies 2020, 13, 2717. [Google Scholar] [CrossRef]
- Chang, R.; Luo, Y.; Zhu, R. Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China. Renew. Energy 2020, 145, 478–489. [Google Scholar] [CrossRef]
- Cortes, A.; Murashita, Y.; Matsuo, T.; Kondo, A.; Shimadera, H.; Inoue, Y. Numerical evaluation of the effect of photovoltaic cell installation on urban thermal environment. Sustain. Cities Soc. 2015, 19, 250–258. [Google Scholar] [CrossRef]
- Brown, K.E.; Baniassadi, A.; Pham, J.V.; Sailor, D.J.; Phelan, P.E. Effects of Rooftop Photovoltaics on Building Cooling Demand and Sensible Heat Flux into the Environment for an Installation on a White Roof. J. Eng. Sustain. Build. Cities 2020, 1, 021001. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Xie, Y.; Wu, D.; Zhu, L.; Ren, J. Effect of building integrated photovoltaics on microclimate of urban canopy layer. Build. Environ. 2007, 42, 1891–1901. [Google Scholar] [CrossRef]
- Pham, J.V.; Baniassadi, A.; Brown, K.E.; Heusinger, J.; Sailor, D.J. Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort. Urban Clim. 2019, 29, 100500. [Google Scholar] [CrossRef]
- Booten, C.; Kruis, N.; Christensen, C. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations; National Renewable Energy Lab.: Golden, CO, USA, 2012.
- Yazdanian, M.; Klems, J.H. Measurement of the Exterior Convective Film Coefficient for Windows in Low-Rise Buildings. ASHRAE Trans. 1993, 100, 1–19. [Google Scholar]
- Del Barrio, E.P. Analysis of the green roofs cooling potential in buildings. Energy Build. 1998, 27, 179–193. [Google Scholar] [CrossRef]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s Standardized Reference Evapotranspiration Equation. In Watershed Management and Operations Management 2000, Proceedings of Watershed Management and Operations Management Conferences 2000, Fort Collins, CO, USA, 20–24 June 2000; Flug, M., Frevert, D., Watkins, J.W., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 1–11. ISBN 978-0-7844-0499-7. [Google Scholar]
- Mirsadeghi, M.; Cóstola, D.; Blocken, B.; Hensen, J. Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Appl. Therm. Eng. 2013, 56, 134–151. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R. ASCE Standardized Reference Evapotranspiration Equation. 2005. Available online: https://xwww.mesonet.org/images/site/ASCE_Evapotranspiration_Formula.pdf (accessed on 23 August 2023).
- Paul Bauder GmbH & Co.KG. Bauder Pflanzsubstrat BL-C03: Produktdatenblatt; Paul Bauder GmbH & Co. KG: Stuttgart, Germany, 2018. [Google Scholar]
- Sailor, D.J.; Hutchinson, D.; Bokovoy, L. Thermal property measurements for ecoroof soils common in the western U.S. Energy Build. 2008, 40, 1246–1251. [Google Scholar] [CrossRef]
- United States Geological Survey. Specific Heat Capacity and Water. Available online: https://www.usgs.gov/special-topics/water-science-school/science/specific-heat-capacity-and-water (accessed on 6 July 2023).
- United States Geological Survey. Water Density. Available online: https://www.usgs.gov/special-topics/water-science-school/science/water-density (accessed on 6 July 2023).
- Busch, J. Designing Urban Microclimates: Passive Low-Tech-Kühlung im Entwurf Städtischer Außenräume. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2019. [Google Scholar]
- Misara, S. Thermal Impacts on Building Integrated Photovoltaic (BIPV) (Electrical, Thermal and Mechanical Characteristics). Ph.D. Thesis, Universität Kassel, Kassel, Germany, 2014. [Google Scholar]
- Knaupp, W. Analyse und Optimierung von Photovoltaik-Modulen. Ph.D. Thesis, Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen, Germany, 1997. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 9781118671603. [Google Scholar]
- Solcerova, A.; van Emmerik, T.; van de Ven, F.; Selker, J.; van de Giesen, N. Skin Effect of Fresh Water Measured Using Distributed Temperature Sensing. Water 2018, 10, 214. [Google Scholar] [CrossRef]
- Häckel, H. Meteorologie, 9r; utb GmbH: Stuttgart, Germany, 2021; ISBN 978-3-8252-5504-6. [Google Scholar]
- Yang, L.; Gao, X.; Lv, F.; Hui, X.; Ma, L.; Hou, X. Study on the local climatic effects of large photovoltaic solar farms in desert areas. Sol. Energy 2017, 144, 244–253. [Google Scholar] [CrossRef]
- Pytlik, S. Messkonzept zur Evaluierung der Auswirkungen Urbaner Photovoltaik auf das Lokale Mikroklima. Master’s Thesis, Technische Universität München, Munich, Germany, 2022. [Google Scholar]
- Dobos, E. Albedo. In Encyclopedia of Soil Science, Second Edition; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-8493-3830-4. [Google Scholar]
- Hanks, R.J. Soil Heat Flow and Temperature. In Applied Soil Physics; Hanks, R.J., Ed.; Springer: New York, NY, USA, 1992; pp. 139–159. ISBN 978-1-4612-7728-6. [Google Scholar]
- Campbell Scientific Ltd. Product Manual HFP01 Soil Heat Flux Plate. 2020. Available online: https://s.campbellsci.com/documents/us/manuals/hfp01.pdf (accessed on 7 July 2023).
- Hepf, C.; Schmid, T.; Brunet, F.; Auer, T. Validation of a thermodynamic building model based on weather and thermal measurement data. In Proceedings of the 9th Conference of IBPSA-Germany and Austria, Bauhaus-Universität Weimar, Weimar, Germany, 20–22 September 2022; pp. 195–200, ISBN 978-3-00-073975-0. [Google Scholar]
- Lave, M.S. Albedo and Diffuse POA Measurements to Evaluate Transposition Model Uncertainty; Sandia National Lab.: Livermore, CA, USA, 2015.
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 2016, 11, 74016. [Google Scholar] [CrossRef]
- Scherba, A. Modeling the Impact of Roof Reflectivity, Integrated Photovoltaic Panels and Green Roof Systems on the Summertime Heat Island. Master’s Thesis, Portland State University, Portland, OR, USA, 2011. [Google Scholar]
Parameter/Coefficient | Value | Unit | Source |
---|---|---|---|
a | 2.38 | - | [27] |
b | 0.89 | - | [27] |
Rf | 2.17 | - | [30] |
cn | 37 | - | [31] |
Cm | 0.24 (daytime) 0.96 (nighttime) | - | [31] |
ρb | 905 | kg/m3 | [32] |
cd | 1.093 | J/kg°C | [33] |
ρW | 997.77 | kg/m3 | [34] |
cW | 4184 | J/kg°C | [35] |
Measurement Parameter | N° | Sensor Name (Manufacturer) | Height/Depth (m) | Unit | Accuracy | Temporal Resolution |
---|---|---|---|---|---|---|
Ambient air temperature | 1 | 107 Temperature Probe (Campbell Scientific Inc., Logan, UT, USA) | 2 | °C | +/−0.2 °C | 10 s, 10 min average |
Shortwave radiation | 2a 2b | 4-component net radiometer NR01 2-component net radiometer RA01 (Hukseflux Thermal Sensors BV, Delft, The Netherlands) | PV: 0.31; 1.89 REF: 1.5 | W/m2 | +/−10% | 10 min |
Longwave radiation | 10 min | |||||
Ambient air temperature | 3 | HygroVUETM5 Temperature and Relative Humidity Sensor (Campbell Scientific Inc., Logan, UT, USA) | 0.5 | °C | +/−0.3 °C | 10 min |
Relative humidity | % | +/−1.8% (0–80% rel.h.) +/−3.0% (80–100% rel.h.) | 10 min | |||
Wind velocity | 4 | Windsonic4 3D Ultrasonic Anemometer (Gill Instruments Limited, Lymington, UK) | 2 | m/s | +/−2% | 10 s, 10 min average |
Wind direction | ° | +/−3% | ||||
PV module surface temperature | 5 | CS241 PT-1000 Class A, Back-of-Module Temperature Sensor (Campbell Scientific Inc., Logan, UT, USA) | 1.4 | °C | +/−0.3–0.4 °C | 10 min |
Volumetric water content (substrate) | 6 | CS650 Soil Water Content Reflectometer (Campbell Scientific Inc., Logan, UT, USA) | PV: −0.08 REF: −0.04 | % | +/−3% | 10 min |
Soil temperature | °C | +/−0.1 °C | ||||
Soil electrical conductivity | dS/m | +/−5% | ||||
Relative dielectric permittivity | - | +/−1.4 | ||||
Soil heat flux | 7 | HFP01 Heat Flux Plate (Hukseflux Thermal Sensors BV, Delft, The Netherlands) | PV: −0.08 REF: −0.04 | W/m2 | −1.5–5% | 10 min |
Soil temperature | 8 | TCAV-L Averaging Soil Thermocouple Probe (Campbell Scientific Inc., Logan, UT, USA) | PV: −0.15; −0.105; −0.55; −0.05 REF: −0.065; −0.045; −0.025; −0.005 | °C | +/−0.3 °C | 10 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassbender, E.; Pytlik, S.; Rott, J.; Hemmerle, C. Impacts of Rooftop Photovoltaics on the Urban Thermal Microclimate: Metrological Investigations. Buildings 2023, 13, 2339. https://doi.org/10.3390/buildings13092339
Fassbender E, Pytlik S, Rott J, Hemmerle C. Impacts of Rooftop Photovoltaics on the Urban Thermal Microclimate: Metrological Investigations. Buildings. 2023; 13(9):2339. https://doi.org/10.3390/buildings13092339
Chicago/Turabian StyleFassbender, Elisabeth, Simon Pytlik, Josef Rott, and Claudia Hemmerle. 2023. "Impacts of Rooftop Photovoltaics on the Urban Thermal Microclimate: Metrological Investigations" Buildings 13, no. 9: 2339. https://doi.org/10.3390/buildings13092339
APA StyleFassbender, E., Pytlik, S., Rott, J., & Hemmerle, C. (2023). Impacts of Rooftop Photovoltaics on the Urban Thermal Microclimate: Metrological Investigations. Buildings, 13(9), 2339. https://doi.org/10.3390/buildings13092339