Influence on the Incorporation of Carbonate Minerals as Stabilizers in Clay and Sawdust-Based Blocks for Thermal Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Materials
2.2. Preparation of Ceramic Blocks
2.3. Thermal Characterization of Ceramic Blocks
2.4. Physical and Thermal Characterization of Ceramic Blocks
3. Results
3.1. Identification of Samples by XRD
3.2. Compositional Analysis of XRF
3.3. Physical and Thermal Characterization of Ceramic Blocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dikmen, N.; Ozkan, S.T.E. Unconventional Insulation Materials. In Insulation Materials in Context of Sustainability; IntechOpen: London, UK, 2016; pp. 1–22. [Google Scholar] [CrossRef]
- Ávila, F.; Puertas, E.; Gallego, R. Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Constr. Build. Mater. 2020, 270, 121435. [Google Scholar] [CrossRef]
- Rawlings, R.H.D.; Sykulski, J. Ground source heat pumps: A technology review. Build. Serv. Eng. Res. Technol. 1999, 20, 119–129. [Google Scholar] [CrossRef]
- Mazzanti, F.; Principi, P.; Raimondo, M.; Zanarini, G. Thermal Conductivity of Clay Bricks. J. Mater. Civ. Eng. 2004, 16, 8–14. [Google Scholar] [CrossRef]
- Gualtieri, M.L.; Gualtieri, A.F.; Gagliardi, S.; Ruffini, P.; Ferrari, R.; Hanuskova, M. Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials. Appl. Clay Sci. 2010, 49, 269–275. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Sadique, M.; Kot, P.; Atherton, W. Future of clay-based construction materials—A review. Constr. Build. Mater. 2019, 210, 172–187. [Google Scholar] [CrossRef]
- Muñoz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Muñoz Velasco, L. Fired clay bricks manufactured by adding wastes as sustainable construction material–A review. Constr. Build. Mater. 2014, 63, 97–107. [Google Scholar] [CrossRef]
- Nagaraj, H.; Sravan, M.; Arun, T.; Jagadish, K. Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. Int. J. Sustain. Built Environ. 2014, 3, 54–61. [Google Scholar] [CrossRef]
- Ouedraogo, E.; Coulibaly, O.; Ouedraogo, A.; Messan, A. Mechanical and thermophysical properties of cement and/or paper (cellulose) stabilized compressed clay bricks. J. Mater. Eng. Struct. 2015, 2, 68–76. [Google Scholar]
- Sore, S.O.; Messan, A.; Prud’Homme, E.; Escadeillas, G.; Tsobnang, F. Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Constr. Build. Mater. 2018, 165, 333–345. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Miraucourt, D.; Messan, A.; Courard, L. Calcium Carbide Residue and Rice Husk Ash for improving the Compressive Strength of Compressed Earth Blocks. MRS Adv. 2018, 3, 2009–2014. [Google Scholar] [CrossRef]
- Reddy, B.V.V.; Kumar, P.P. Cement stabilised rammed earth. Part A: Compaction characteristics and physical properties of compacted cement stabilised soils. Mater. Struct. 2011, 44, 681–693. [Google Scholar] [CrossRef]
- Khattab, S.A.; Al-Mukhtar, M.; Fleureau, J.-M. Long-Term Stability Characteristics of a Lime-Treated Plastic Soil. J. Mater. Civ. Eng. 2007, 19, 358–366. [Google Scholar] [CrossRef]
- Arsène, M.-I.L.; Frédéric, C.; Nathalie, F. Improvement of lifetime of compressed earth blocks by adding limestone, sandstone and porphyry aggregates. J. Build. Eng. 2020, 29, 101155. [Google Scholar] [CrossRef]
- Teixeira, E.; Machado, G.; Junior, A.P.; Guarnier, C.; Fernandes, J.; Silva, S.; Mateus, R. Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies 2020, 13, 2978. [Google Scholar] [CrossRef]
- Bamogo, H.; Ouedraogo, M.; Sanou, I.; Aubert, J.-E.; Millogo, Y. Physical, Hydric, Thermal and Mechanical Properties of Earth Renders Amended with Dolomitic Lime. Materials 2022, 15, 4014. [Google Scholar] [CrossRef] [PubMed]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Miao, S.; Zhou, Y. Temperature dependence of thermal diffusivity and conductivity for sandstone and carbonate rocks. J. Therm. Anal. Calorim. 2017, 131, 1647–1652. [Google Scholar] [CrossRef]
- Momenzadeh, L.; Moghtaderi, B.; Liu, X.F.; Sloan, S.W.; Belova, I.V.; Murch, G.E. The Thermal Conductivity of Magnesite, Dolomite and Calcite as Determined by Molecular Dynamics Simulation. Diffus. Found. 2018, 19, 18–34. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, C.; Zhang, B.; Tang, B.; Li, K.; Li, W.; Fu, X. Effect of Temperature on the Thermal Conductivity of Rocks and Its Implication for In Situ Correction. Geofluids 2021, 2021, 6630236. [Google Scholar] [CrossRef]
- Jesudass, A.; Gayathri, V.; Geethan, R.; Gobirajan, M.; Venkatesh, M. Earthen blocks with natural fibres—A review. Mater. Today: Proc. 2021, 45, 6979–6986. [Google Scholar] [CrossRef]
- Laibi, A.B.; Poullain, P.; Leklou, N.; Gomina, M.; Sohounhloué, D.K.C. Influence of the kenaf fiber length on the mechanical and thermal properties of Compressed Earth Blocks (CEB). KSCE J. Civ. Eng. 2017, 22, 785–793. [Google Scholar] [CrossRef]
- Olacia, E.; Pisello, A.L.; Chiodo, V.; Maisano, S.; Frazzica, A.; Cabeza, L.F. Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Constr. Build. Mater. 2020, 239, 117669. [Google Scholar] [CrossRef]
- Babé, C.; Kidmo, D.K.; Tom, A.; Mvondo, R.R.N.; Boum, R.B.E.; Djongyang, N. Thermomechanical characterization and durability of adobes reinforced with millet waste fibers (Sorghum bicolor). Case Stud. Constr. Mater. 2020, 13, e00422. [Google Scholar] [CrossRef]
- Ibrahim, J.E.F.; Tihtih, M.; Gömze, L.A. Environmentally-friendly ceramic bricks made from zeolite-poor rock and sawdust. Constr. Build. Mater. 2021, 297, 123715. [Google Scholar] [CrossRef]
- Khoudja, D.; Taallah, B.; Izemmouren, O.; Aggoun, S.; Herihiri, O.; Guettala, A. Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste. Constr. Build. Mater. 2021, 270, 121824. [Google Scholar] [CrossRef]
- Hany, E.; Fouad, N.; Abdel-Wahab, M.; Sadek, E. Investigating the mechanical and thermal properties of compressed earth bricks made by eco-friendly stabilization materials as partial or full replacement of cement. Mat. Today Proceed. 2021, 45, 6979–6986. [Google Scholar] [CrossRef]
- NMX-C-038-ONNCCE-2013; Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C., Determinación de las Dimensiones de Bloques, Tabiques o Ladrillos y Tabicones. ONNCCE: Ciudad de México, Mexico, 2013.
- Schroeder, H. Moisture transfer and change in strength during the construction of earthen buildings. Inf. Construcción 2011, 63, 107–116. [Google Scholar] [CrossRef]
- NMX-C-508-ONNCCE-2015; Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C., Bloques de Tierra Comprimida Estabilizados Con Cal. ONNCCE: Ciudad de México, Mexico, 2015.
- NMX-C-189-ONNCCE-2010; Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C., Materiales Termoaislantes—Determinación de la Transmisión Térmica Con Aparato de Placa Caliente Aislada. ONNCCE: Ciudad de México, Mexico, 2010.
- NMX-C-228-ONNCCE-2010; Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C., Determinación de la Absorción de Humedad y Absorción de Agua. ONNCCE: Ciudad de México, Mexico, 2010.
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; López, M.V. Un método sencillo para la estimación de la porosidad de un agregado de suelo. Estudios en la Zona No Saturada 2015, 7, 3–6. [Google Scholar]
- Wang, S.; Gainey, L.; Mackinnon, I.D.; Allen, C.; Gu, Y.; Xi, Y. Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. J. Build. Eng. 2023, 66, 105802. [Google Scholar] [CrossRef]
- Linares-González, J.; Huerta-García, F.; Capel-Martínez, J. La arcilla como material cerámico: Características y comportamiento. Cuad. Prehist. Granada 1983, 8, 479–490. [Google Scholar] [CrossRef]
- Rodríguez, L.A.D.; Torrecillas, R. Arcillas cerámicas: Una revisión de sus distintos tipos, significados y aplicaciones. Cerámica Y Vidr. 2002, 41, 459–470. [Google Scholar] [CrossRef]
- de Oliveira, H.A.; dos Santos, C.P. Limestone Clays for Ceramic Industry. In Clay Science and Technology; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sharma, N.K.; Swain, S.K.; Sahoo, U.C. Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotech. Geol. Eng. 2012, 30, 1197–1205. [Google Scholar] [CrossRef]
- Jain, A.K.; Jha, A.K. Shivanshi Geotechnical behaviour and micro-analyses of expansive soil amended with marble dust. Soils Found. 2020, 60, 737–751. [Google Scholar] [CrossRef]
- Danish, A.; Totiç, E.; Bayram, M.; Sütçü, M.; Gencel, O.; Erdoğmuş, E.; Ozbakkaloglu, T. Assessment of Mineralogical Characteristics of Clays and the Effect of Waste Materials on Their Index Properties for the Production of Bricks. Materials 2022, 15, 8908. [Google Scholar] [CrossRef] [PubMed]
- Malaktou, E.; Ioannou, I.; Philokyprou, M. Investigating the Thermal Properties of Earth-Based Materials: The Case of Adobes. In 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Springer: Atenas, Greece, 2018. [Google Scholar] [CrossRef]
- Al Rim, K.; Ledhem, A.; Douzane, O.; Dheilly, R.-M.; Queneudec, M. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cem. Concr. Compos. 1999, 21, 269–276. [Google Scholar] [CrossRef]
- Ruppik, M. Use of organic and inorganic pore-forming agents in the brick and tile industry. Ziegelind. Int. 2006, 59, 22–29. [Google Scholar]
- de Castrillo, M.C.; Ioannou, I.; Philokyprou, M. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. Constr. Build. Mater. 2021, 294, 123516. [Google Scholar] [CrossRef]
- Erker, A. The thermal conductivity of the brick ceramic body. Ziegelind. Int. 2002, 55, 34–42. [Google Scholar]
- Bernal, I.; Cabezas, H.; Espitia, C.; Mojica, J.; Quintero, J. Análisis próximo de arcillas para cerámica. Rev. Académica Colomb. 2003, 27, 569–578. [Google Scholar]
- Burgos-Cara, A.; Rodríguez-Navarro, C.; Ortega-Huertas, M.; Ruiz-Agudo, E. Bioinspired Alkoxysilane Conservation Treatments for Building Materials Based on Amorphous Calcium Carbonate and Oxalate Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 4954–4967. [Google Scholar] [CrossRef]
- Basu, S.; Orr, S.; Aktas, Y. A Geological Perspective on Climate Change and Building Stone Deterioration in London: Implications for Urban Stone-Built Heritage Research and Management. Atmosphere 2020, 11, 788. [Google Scholar] [CrossRef]
Sample | Location | Coordinates |
---|---|---|
A1 | Luis Donaldo Colosio, Chiapa de Corzo | 16°41′47.9″ N, 93°00′32.8″ O |
A2 | Libramiento Norte, Tuxtla Gutiérrez | 16°46′28.5″ N, 93°09′48.9″ O |
A3 | Pasté, Zinacantán | 16°41′31.5″ N, 92°45′31.3″ O |
C1 | Las Lajas, Tzimol | 16°10′10.7″ N, 92°11′23.3″ O |
C2 | Libramiento Norte, Tuxtla Gutiérrez | 16°46′28.5″ N, 93°09′48.9″ O |
Sample | SiO2 | Al2O3 | CaO | MgO | Fe2O3 | K2O | TiO2 | Others |
---|---|---|---|---|---|---|---|---|
MA | 32.54 | 12.32 | 36.04 | 6.36 | 8.28 | 2.18 | 1.25 | 1.03 |
MB | 30.17 | 10.99 | 43.58 | 1.36 | 9.51 | 2.26 | 1.32 | 0.81 |
MC | 15.77 | 7.26 | 59.39 | 11.45 | 4.35 | 0.41 | 0.89 | 0.48 |
MD | 9.12 | 3.55 | 81.20 | 0.34 | 4.45 | 0.36 | 0.67 | 0.31 |
ME | 24.65 | 19.26 | 37.15 | 7.61 | 9.00 | 0.43 | 1.22 | 0.68 |
MF | 19.04 | 14.87 | 50.69 | 0.27 | 12.90 | 0.32 | 1.55 | 0.36 |
Sample | k (W m−1 K−1) | R (W m2 K−1) | ρb (kg m−3) | P (%) |
---|---|---|---|---|
MA | 0.337 ± 0.0087 | 0.218 ± 0.0054 | 1357.24 ± 33.564 | 19.73 ± 0.31 |
MB | 0.289 ± 0.0013 | 0.251 ± 0.0011 | 1251.39 ± 8.017 | 22.53 ± 0.41 |
MC | 0.340 ± 0.0036 | 0.199 ± 0.0021 | 1379.72 ± 53.219 | 28.32 ± 0.56 |
MD | 0.297 ± 0.0022 | 0.226 ± 0.0014 | 1259.44 ± 16.576 | 31.61 ± 1.35 |
ME | 0.346 ± 0.0048 | 0.215 ± 0.0029 | 1079.39 ± 26.218 | 28.37 ± 0.56 |
MF | 0.295 ± 0.0024 | 0.238 ± 0.0019 | 998.90 ± 6.308 | 33.75 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Joo, J.E.; Farrera-Vázquez, N.; López-Cameras, S.; Ruíz-Torres, R.P.; Meza-Avendaño, C.A. Influence on the Incorporation of Carbonate Minerals as Stabilizers in Clay and Sawdust-Based Blocks for Thermal Insulation. Buildings 2023, 13, 656. https://doi.org/10.3390/buildings13030656
Aguilar-Joo JE, Farrera-Vázquez N, López-Cameras S, Ruíz-Torres RP, Meza-Avendaño CA. Influence on the Incorporation of Carbonate Minerals as Stabilizers in Clay and Sawdust-Based Blocks for Thermal Insulation. Buildings. 2023; 13(3):656. https://doi.org/10.3390/buildings13030656
Chicago/Turabian StyleAguilar-Joo, José Eduardo, Neín Farrera-Vázquez, Selene López-Cameras, Raúl Pavel Ruíz-Torres, and Carlos Alonso Meza-Avendaño. 2023. "Influence on the Incorporation of Carbonate Minerals as Stabilizers in Clay and Sawdust-Based Blocks for Thermal Insulation" Buildings 13, no. 3: 656. https://doi.org/10.3390/buildings13030656