Damage Detection in Reinforced Concrete Member Using Local Time-Frequency Transform Applied to Vibration Measurements
Abstract
:1. Introduction
1.1. Motivation
1.2. Background
1.3. Significance and Aims
1.4. Article Outline
2. Methodologies
2.1. Theory of Local Time-Frequency Transform (LTFT)
2.2. Reference Time-Frequency Analysis Methods
2.3. Theory of Rényi Entropy
3. Evaluation Based on Synthetic Signals
3.1. Signal Designs
- 1.
- Constant-Frequency Step Signal
- 2.
- Linear Frequency-Varying Signal
- 3.
- Nonlinear Frequency-Varying Signal
3.2. Time-Frequency Analysis of the Synthetic Signals
- 1.
- Parameter Selection
- 2.
- Constant-Frequency Step Signal
- 3.
- Linear Frequency-Varying Signal Model
- 3.
- Nonlinear Frequency-Varying Signal Model
4. Evaluation Based on Experimental Signals
4.1. Experimental Test Setup
4.2. Signal Processing and Results
- Pre-Damage Signal Processing
- 2.
- Post-Damage Signal Processing
- 3.
- Time-Frequency Analysis
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Z.; Noori, M.N.; St Amand, R. Wavelet-based approach for structural damage detection. J. Eng. Mech. 2000, 126, 677. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Farrar, C.R.; Park, G.; Allen, D.W.; Todd, M.D. Sensor network paradigms for structural health monitoring. Struct. Control Monit. 2006, 13, 210–225. [Google Scholar] [CrossRef]
- Brownjohn, J.M. Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 589–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worden, K.; Farrar, C.R.; Manson, G.; Park, G. The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 1639–1664. [Google Scholar] [CrossRef]
- Tsang, A.H.C. Condition-based maintenance: Tools and decision making. J. Qual. Maint. Eng. 1995, 1, 3–17. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Maeck, J.; Wahab, M.A.; Peeters, B.; De Roeck, G.; De Visscher, J.; De Wilde, W.P.; Vantomme, J. Damage identification in reinforced concrete structures by dynamic stiffness determination. Eng. Struct. 2000, 22, 1339–1349. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 2001, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Cheraghi, N.; Zou, G.P.; Taheri, F. Piezoelectric-Based Degradation Assessment of a Pipe Using Fourier and Wavelet Analyses. Comput. -Aided Civ. Infrastruct. Eng. 2005, 20, 369–382. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng.—Part III Radio Commun. Eng. 1946, 93, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Amezquita-Sanchez, J.P.; Osornio-Rios, R.A.; Romero-Troncoso, R.J.; Dominguez-Gonzalez, A. Hardware-software system for simulating and analyzing earthquakes applied to civil structures. Nat. Hazards Earth Syst. Sci. 2012, 12, 61–73. [Google Scholar] [CrossRef]
- Nagata, Y.; Iwasaki, S.; Hariyama, T.; Fujioka, T.; Obara, T.; Wakatake, T.; Abe, M. Binaural localization based on weighted Wiener gain improved by incremental source attenuation. IEEE Trans. Audio Speech Lang. Process. 2009, 17, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Yinfeng, D.; Yingmin, L.; Mingkui, X.; Ming, L. Analysis of earthquake ground motions using an improved Hilbert–Huang transform. Soil Dyn. Earthq. Eng. 2008, 28, 7–19. [Google Scholar] [CrossRef]
- Morlet, J.; Arens, G.; Fourgeau, E.; Glard, D. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics 1982, 47, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Foufoula-Georgiou, E. Wavelet analysis for geophysical applications. Rev. Geophys. 1997, 35, 385–412. [Google Scholar] [CrossRef] [Green Version]
- Ghosh-Dastidar, S.; Adeli, H. Neural network-wavelet microsimulation model for delay and queue length estimation at freeway work zones. J. Transp. Eng. 2006, 132, 331–341. [Google Scholar] [CrossRef]
- Rodriguez-Donate, C.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Garcia-Perez, A.; Osornio-Rios, R.A. Wavelet-based general methodology for multiple fault detection on induction motors at the startup vibration transient. J. Vib. Control 2011, 17, 1299–1309. [Google Scholar] [CrossRef]
- Kim, H.; Adeli, H. Hybrid control of smart structures using a novel wavelet-based algorithm. Comput. -Aided Civ. Infrastruct. Eng. 2005, 20, 7–22. [Google Scholar] [CrossRef]
- Amiri, G.G.; Abdolahi Rad, A.; Aghajari, S.; Khanmohamadi Hazaveh, N. Generation of near-field artificial ground motions compatible with median-predicted spectra using PSO-based neural network and wavelet analysis. Comput. -Aided Civ. Infrastruct. Eng. 2012, 27, 711–730. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Pakrashi, V.; Ghosh, B. Application of S transform in structural health monitoring. In 7th International Symposium on Nondestructive Testing in Civil Engineering (NDTCE), Nantees, France, 30 June–3 July 2099; NDT: Nantes, France, 2009. [Google Scholar]
- Chen, Y. Nonstationary local time-frequency transform. Geophysics 2021, 86, V245–V254. [Google Scholar] [CrossRef]
- Tary, J.B.; Herrera, R.H.; Han, J.; van der Baan, M. Spectral estimation—What is new? What is next? Rev. Geophys. 2014, 52, 723–749. [Google Scholar] [CrossRef]
- Liu, Y.; Fomel, S. Seismic data analysis using local time-frequency decomposition. Geophys. Prospect. 2013, 61, 516–525. [Google Scholar] [CrossRef]
- Liu, G.; Fomel, S.; Chen, X. Time-frequency analysis of seismic data using local attributes. Geophysics 2011, 76, P23–P34. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L. Time-Frequency Analysis; Prentice Hall: Hoboken, NJ, USA, 1995; Volume 778. [Google Scholar]
- Cohen, L. Time-frequency distributions-a review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk 1963, 151, 501–504. [Google Scholar]
- Fomel, S. Shaping regularization in geophysical-estimation problems. Geophysics 2007, 72, R29–R36. [Google Scholar] [CrossRef]
- Fomel, S. Adaptive multiple subtraction using regularized nonstationary regression. Geophysics 2009, 74, V25–V33. [Google Scholar] [CrossRef] [Green Version]
- Baraniuk, R.G.; Flandrin, P.; Michel, O. Measuring time-frequency information and complexity using the Renyi entropies. In Proceedings of 1995 IEEE International Symposium on Information Theory, Whistler, BC, Canada, 17–22 September 1995; p. 426. [Google Scholar]
- Brown, G.; Pocock, A.; Zhao, M.J.; Luján, M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13, 27–66. [Google Scholar]
- Hafiz, A.; Schumacher, T. Effects of elastic supports and flexural cracking on low and high order modal properties of a reinforced concrete girder. Eng. Struct. 2019, 178, 573–585. [Google Scholar] [CrossRef]
- Tan, C.M. Nonlinear Vibrations of Cracked Reinforced Concrete Beams. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2003. [Google Scholar]
- Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Migliori, A. Dynamic Characterization and Damage Detection in the I-40 Bridge over the Rio Grande (No. LA-12767-MS); Los Alamos National Lab.: Los Alamos, NM, USA, 1994. [Google Scholar]
- Gollob, S. Source Localization of Acoustic Emissions Using Multi-Segment Paths Based on a Heterogeneous Velocity Model in Structural Concrete; Swiss Federal Institute of Technology in Zürich: Zurich, Swiss, 2017. [Google Scholar]
Time-Frequency Analysis Methods | Synthetic Signals | ||
---|---|---|---|
Signal 1: Constant-Frequency Step Signal Model | Signal 2: Linear Frequency-Varying Signal Model | Signal 3: Nonlinear Frequency-Varying Signal Model | |
STFT | 4.05 | 7.33 | 7.38 |
ST | 2.15 | 2.86 | 1.47 |
LTFT | 1.13 | 2.24 | 1.16 |
Modes of Nature Frequency | Frequency (Hz) | Shift (Hz) | Shift in % | |
---|---|---|---|---|
Uncracked | Cracked | |||
1 | 38 | 42 | +4 | 10.5% |
2 | 84 | 90 | +6 | 7.1% |
3 | 134 | 140 | +6 | 4.4% |
4 | 236 | 220 | −16 | 6.8% |
5 | 412 | 380 | −32 | 7.8% |
6 | 592 | 566 | −26 | 4.4% |
7 | 758 | 730 | −28 | 3.7% |
8 | 896 | 874 | −22 | 2.5% |
9 | 988 | 968 | −20 | 2% |
10 | 1068 | 1048 | −20 | 1.9% |
Time-Frequency Analysis Methods | Experimental Signals | |||
---|---|---|---|---|
un8-8 | cr8-8 | un14-2 | cr14-2 | |
STFT | 1.41 | 2.28 | 1.14 | 1.18 |
ST | 2.33 | 2.18 | 1.95 | 1.62 |
LTFT | 1.79 | 1.46 | 1.86 | 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Schumacher, T.; Li, Y.; Xu, L.; Wang, B. Damage Detection in Reinforced Concrete Member Using Local Time-Frequency Transform Applied to Vibration Measurements. Buildings 2023, 13, 148. https://doi.org/10.3390/buildings13010148
Liu N, Schumacher T, Li Y, Xu L, Wang B. Damage Detection in Reinforced Concrete Member Using Local Time-Frequency Transform Applied to Vibration Measurements. Buildings. 2023; 13(1):148. https://doi.org/10.3390/buildings13010148
Chicago/Turabian StyleLiu, Ning, Thomas Schumacher, Yan Li, Lina Xu, and Bo Wang. 2023. "Damage Detection in Reinforced Concrete Member Using Local Time-Frequency Transform Applied to Vibration Measurements" Buildings 13, no. 1: 148. https://doi.org/10.3390/buildings13010148
APA StyleLiu, N., Schumacher, T., Li, Y., Xu, L., & Wang, B. (2023). Damage Detection in Reinforced Concrete Member Using Local Time-Frequency Transform Applied to Vibration Measurements. Buildings, 13(1), 148. https://doi.org/10.3390/buildings13010148