Classification of Household Room Air Conditioner User Groups by Running Time in the Hot Summer and Cold Winter Zone of China
Abstract
:1. Introduction
2. Methods and Data Description
2.1. Data Description
2.2. Lower Class Segmentation
2.3. Upper Class Segmentation
3. Results
3.1. Lower Class Segmentation
3.2. Upper Class Segmentation
3.3. Summary of RAC User Classification
4. Discussion
4.1. RAC Usage Intensity of Different User Classes
4.2. Usage Distribution of Different Classes
4.3. Implications for Regional Energy Management
4.4. Limitations
5. Conclusions
- This study proposes data-driven methods to classify RAC user groups by running time over a year at regional level from novel perspectives. On the one hand, a few RAC users in the Lower Class, which is identified by the absolute poverty line with the Gini coefficient of annual running time distribution. On the other hand, a small number of the Upper Class group is distinguished through the determination of the scaling region in the power-law distribution.
- Based on the case study in the HSCW zone of China, the annual trends of running times in bedroom and living-room cases are similar, thus the Lower/Lower Middle/Upper Middle/Upper Class groups account for around 15%/42%/31%/12% of the total RAC users, respectively. In general, the flexibility potential increases gradually from Lower to Upper Class.
- Among all classes, RACs are used more in summer and winter seasons but less in transitional seasons. Meanwhile, RAC users in different user-class groups show obvious differences in usage demand in the winter season. Overall, the summer season has the most RAC monthly rigid demand periods over the year, both in bedroom and living-room cases.
- The patterns of daily RAC use intensity of four classes are different between bedroom and living-room cases, especially in midnight. In addition, 21:00–22:00 is the overlapping hourly rigid demand period for both bedroom and living-room cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BERC. Annual Report on China Building Energy Efficiency; Tsinghua University: Beijing, China, 2020. [Google Scholar]
- Sha, H.; Xu, P.; Hu, C.; Li, Z.; Chen, Y.; Chen, Z. A simplified HVAC energy prediction method based on degree-day. Sustain. Cities Soc. 2019, 51, 101698. [Google Scholar] [CrossRef]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef]
- Hu, S.; Yan, D.; Guo, S.; Cui, Y.; Dong, B. A survey on energy consumption and energy usage behavior of households and residential building in urban China. Energy Build. 2017, 148, 366–378. [Google Scholar] [CrossRef]
- Hu, S.; Yan, D.; Qian, M. Using bottom-up model to analyze cooling energy consumption in China’s urban residential building. Energy Build. 2019, 202, 109352. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020. Available online: http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm (accessed on 30 July 2022).
- Feng, X.; Yan, D.; Wang, C.; Sun, H. A preliminary research on the derivation of typical occupant behavior based on large-scale questionnaire surveys. Energy Build. 2016, 117, 332–340. [Google Scholar] [CrossRef]
- Qi, N.; Cheng, L.; Xu, H.; Wu, K.; Li, X.L.; Wang, Y.; Liu, R. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads. Appl. Energy 2020, 279, 115708. [Google Scholar] [CrossRef]
- Sena, B.; Zaki, S.A.; Rijal, H.B.; Ardila-Rey, J.A.; Yusoff, N.M.; Yakub, F.; Ridwan, M.K.; Muhammad-Sukki, F. Determinant factors of electricity consumption for a Malaysian household based on a field survey. Sustainability 2021, 13, 818. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Gu, J.; Schmidt, F.; Li, W. Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy Build. 2018, 177, 125–139. [Google Scholar] [CrossRef]
- Newsham, G.R.; Birt, B.J.; Rowlands, I.H. A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use. Energy Policy 2011, 39, 6376–6389. [Google Scholar] [CrossRef]
- Li, W.; Xu, P. A fast method to predict the demand response peak load reductions of commercial buildings. Sci. Technol. Built Environ. 2016, 22, 633–642. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings. Appl. Energy 2016, 173, 406–417. [Google Scholar] [CrossRef]
- Reynders, G.; Amaral Lopes, R.; Marszal-Pomianowska, A.; Aelenei, D.; Martins, J.; Saelens, D. Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energy Build. 2018, 166, 372–390. [Google Scholar] [CrossRef]
- Olawale, O.W.; Gilbert, B.; Reyna, J. Residential Demand Flexibility: Modeling Occupant Behavior using Sociodemographic Predictors. Energy Build. 2022, 262, 111973. [Google Scholar] [CrossRef]
- Yan, L.; Liu, M. A simplified prediction model for energy use of air conditioner in residential buildings based on monitoring data from the cloud platform. Sustain. Cities Soc. 2020, 60, 102194. [Google Scholar] [CrossRef]
- Ren, G.; Sunikka-Blank, M.; Zhang, X. Young urban households in Shanghai, China: Characteristics of energy use and attitudes. Sustain. Cities Soc. 2020, 60, 102174. [Google Scholar] [CrossRef]
- Xue, K.; Liu, M.; Ma, M.; Hu, M.; Yan, L.; Chen, X.; Zeng, W. A framework for short-term energy consumption prediction based on room air conditioner group characteristics. J. Build. Eng. 2021, 52, 104400. [Google Scholar] [CrossRef]
- Malik, A.; Haghdadi, N.; MacGill, I.; Ravishankar, J. Appliance level data analysis of summer demand reduction potential from residential air conditioner control. Appl. Energy 2019, 235, 776–785. [Google Scholar] [CrossRef]
- Ren, X.; Yan, D.; Wang, C. Air-conditioning usage conditional probability model for residential buildings. Build. Environ. 2014, 81, 172–182. [Google Scholar] [CrossRef]
- Yao, J. Modelling and simulating occupant behaviour on air conditioning in residential buildings. Energy Build. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Xia, D.; Lou, S.; Huang, Y.; Zhao, Y.; Li, D.H.W.; Zhou, X. A study on occupant behaviour related to air-conditioning usage in residential buildings. Energy Build. 2019, 203, 109446. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Lian, Z. Dynamic indoor comfort temperature settings based on the variation in clothing insulation and its energy-saving potential for an air-conditioning system. Energy Build. 2020, 220, 110086. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; Garcia, F.S. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 2021, 33, 101692. [Google Scholar]
- Pandey, B.; Bohara, B.; Pungaliya, R.; Patwardhan, S.C.; Banerjee, R. A thermal comfort-driven model predictive controller for residential split air conditioner. J. Build. Eng. 2021, 42, 102513. [Google Scholar] [CrossRef]
- Liu, H.; Sun, H.; Mo, H.; Liu, J. Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring data during hot and humid season. Energy Build. 2021, 250, 111297. [Google Scholar] [CrossRef]
- Yan, L.; Liu, M. Predicting household air conditioners’ on/off state considering occupants’ preference diversity: A study in Chongqing, China. Energy Build. 2021, 253, 111516. [Google Scholar] [CrossRef]
- Tran, L.N.; Gao, W.; Ge, J. Sensitivity analysis of household factors and energy consumption in residential houses: A multi-dimensional hybrid approach using energy monitoring and modeling. Energy Build. 2021, 239, 110864. [Google Scholar] [CrossRef]
- Ouyang, J.; Hokao, K. Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy Build. 2009, 41, 711–720. [Google Scholar] [CrossRef]
- Rinaldi, A.; Schweiker, M.; Iannone, F. On uses of energy in buildings: Extracting influencing factors of occupant behaviour by means of a questionnaire survey. Energy Build. 2018, 168, 298–308. [Google Scholar] [CrossRef]
- An, J.; Yan, D.; Hong, T. Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings. Energy Build. 2018, 174, 214–227. [Google Scholar] [CrossRef]
- Kindaichi, S.; Nishina, D.; Murakawa, S.; Ishida, M.; Ando, M. Analysis of energy consumption of room air conditioners: An approach using individual operation data from field measurements. Appl. Therm. Eng. 2017, 112, 7–14. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, D.; Feng, X.; Deng, G.; Jian, Y.; Jiang, Y. Influence of household air-conditioning use modes on the energy performance of residential district cooling systems. Build. Simul. 2016, 9, 429–441. [Google Scholar] [CrossRef]
- Sun, Y.; Haghighat, F.; Fung, B.C.M. A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020, 221, 110022. [Google Scholar] [CrossRef]
- Du, J.; Pan, W.; Yu, C. In-situ monitoring of occupant behavior in residential buildings—A timely review. Energy Build. 2020, 212, 109811. [Google Scholar] [CrossRef]
- NOAA. NOAA National Centers for Environmental Information (2001): Global Surface Hourly [57516099999, 57494099999 and 58362099999]. Available online: https://www.ncei.noaa.gov/access/search/data-search/global-hourly?stations= (accessed on 31 July 2022).
- Robinson, C.; Yan, D.; Bouzarovski, S.; Zhang, Y. Energy poverty and thermal comfort in northern urban China: A household-scale typology of infrastructural inequalities. Energy Build. 2018, 177, 363–374. [Google Scholar] [CrossRef]
- Thomson, H.; Simcock, N.; Bouzarovski, S.; Petrova, S. Energy poverty and indoor cooling: An overlooked issue in Europe. Energy Build. 2019, 196, 21–29. [Google Scholar] [CrossRef]
- van Hove, W.; Dalla Longa, F.; van der Zwaan, B. Identifying predictors for energy poverty in Europe using machine learning. Energy Build. 2022, 264, 112064. [Google Scholar] [CrossRef]
- Ravallion, M. Poverty lines. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2008; p. 2. [Google Scholar]
- Milanovic, B. A simple way to calculate the Gini coefficient, and some implications. Econ. Lett. 1997, 56, 45–49. [Google Scholar] [CrossRef]
- Jacobson, A.; Milman, A.D.; Kammen, D.M. Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity. Energy Policy 2005, 33, 1825–1832. [Google Scholar] [CrossRef]
- Sitthiyot, T.; Holasut, K. A simple method for measuring inequality. Palgrave Commun. 2020, 6, 112. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Reed, G.F.; Lynn, F.; Meade, B.D. Use of coefficient of variation in assessing variability of quantitative assays. Clin. Diagn. Lab. Immunol. 2002, 9, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]
- OliveiraJG, B. Humandynamics: Darwin and einstein correspondence patterns. Nature 2005, 437, 1251r1253. [Google Scholar]
- Zhao, Z.-D.; Zhou, T. Empirical analysis of online human dynamics. Phys. A Stat. Mech. Its Appl. 2012, 391, 3308–3315. [Google Scholar] [CrossRef]
- Yang, T.; Feng, X.; Wu, Y.; Wang, S.; Xiao, J. Human dynamics in repurchase behavior based on comments mining. Phys. A Stat. Mech. Its Appl. 2018, 502, 563–569. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [Google Scholar] [CrossRef]
- Cousineau, D.; Chartier, S. Outliers detection and treatment: A review. Int. J. Psychol. Res. 2010, 3, 58–67. [Google Scholar] [CrossRef]
- Jones, P.R. A note on detecting statistical outliers in psychophysical data. Atten. Percept. Psychophy 2019, 81, 1189–1196. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Wang, C.; Ling, D.; Miao, Q. Automatic identification method of fractal scaling region. Eng. Appl. 2012, 48, 9–12. [Google Scholar]
- O’Brien, W.; Wagner, A.; Schweiker, M.; Mahdavi, A.; Day, J.; Kjærgaard, M.B.; Carlucci, S.; Dong, B.; Tahmasebi, F.; Yan, D.; et al. Introducing IEA EBC Annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation. Build. Environ. 2020, 178, 106738. [Google Scholar] [CrossRef]
Bedroom Cases | Living-Room Cases | |||||||
---|---|---|---|---|---|---|---|---|
Pearson | Spearman | Pearson | Spearman | |||||
r | P | ρ | P | r | P | ρ | P | |
YRT-TPC | 0.8403 | <0.01 | 0.8816 | <0.01 | 0.9750 | <0.01 | 0.9092 | <0.01 |
YRT-MTD | 0.0907 | 0.0811 | 0.1052 | 0.0428 | 0.1481 | 0.3959 | −0.0541 | 0.7578 |
MTD-TPC | 0.2824 | <0.01 | 0.3098 | <0.01 | 0.1615 | 0.3540 | −0.0535 | 0.7602 |
Lower Class | Lower Middle Class | Upper Middle Class | Upper Class | |
---|---|---|---|---|
Bedroom cases | 15.67% | 39.79% | 32.30% | 12.24% |
Living-room cases | 15.10% | 43.12% | 29.26% | 12.52% |
Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | |
---|---|---|---|---|---|---|---|---|---|---|
Bedroom cases | ||||||||||
Lower Class | S-E | T-N | S-N | T-D | S-E | T-N | S-N | T-N | T-N | S-N |
Lower Middle Class | S-N | T-N | S-N | T-N | T-D | T-N | S-N | T-N | T-D | S-N |
Upper Middle Class | S-N | T-D | S-N | T-E | T-D | S-N | S-N | T-N | T-D | S-N |
Upper Class | S-D | T-N | S-N | T-E | T-E | S-N | S-N | T-N | T-N | S-N |
Living-room cases | ||||||||||
Lower Class | S-E | T-N | S-N | T-N | S-D | T-N | S-E | T-N | S-N | T-N |
Lower Middle Class | S-E | T-N | S-E | T-D | T-E | T-N | S-E | T-N | T-N | S-E |
Upper Middle Class | S-E | T-N | S-E | T-N | T-D | T-N | S-E | T-N | T-N | S-E |
Upper Class | S-E | T-N | S-E | T-D | T-D | S-E | S-E | T-N | T-N | S-N |
Unit Demand (h/kw) | Lower Class | Lower Middle Class | Upper Middle Class | Upper Class |
---|---|---|---|---|
Bedroom cases | 19.78 | 149.33 | 384.31 | 2533.84 |
Living-room cases | 6.46 | 39.36 | 109.73 | 1366.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Liu, M.; Li, Z. Classification of Household Room Air Conditioner User Groups by Running Time in the Hot Summer and Cold Winter Zone of China. Buildings 2022, 12, 1415. https://doi.org/10.3390/buildings12091415
Gu X, Liu M, Li Z. Classification of Household Room Air Conditioner User Groups by Running Time in the Hot Summer and Cold Winter Zone of China. Buildings. 2022; 12(9):1415. https://doi.org/10.3390/buildings12091415
Chicago/Turabian StyleGu, Xiaobei, Meng Liu, and Ziqiao Li. 2022. "Classification of Household Room Air Conditioner User Groups by Running Time in the Hot Summer and Cold Winter Zone of China" Buildings 12, no. 9: 1415. https://doi.org/10.3390/buildings12091415
APA StyleGu, X., Liu, M., & Li, Z. (2022). Classification of Household Room Air Conditioner User Groups by Running Time in the Hot Summer and Cold Winter Zone of China. Buildings, 12(9), 1415. https://doi.org/10.3390/buildings12091415