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Abstract: Household room air conditioners (RACs) are widely used in residential buildings to
maintain an indoor thermal climate in China’s hot summer and cold winter (HSCW) zone. The
aggregate utilization of RACs in a region has a great impact on regional energy demand in both
the heating and cooling seasons. Classifying household RAC users and identifying their RAC
usage demands will contribute to better balanced regional energy management for building energy
flexibility. In this study, a data-driven method was proposed to classify the household RAC user
groups at the regional level, using running time as an indicator. The results showed that RAC users
could be classified into four groups with different RAC usage demands. The Lower Class was
determined by the absolute poverty line with the Gini coefficient. In addition, the Upper Class was
distinguished through the determination of the scaling region in power-law distribution. At the same
time, the similarities and differences between different classes in monthly and hourly periods and the
flexibility potential were discussed. The rigid demand was observed in the monthly periods of June,
July and August and during the hourly periods of 21:00–22:00 in both the bedroom and living-room.

Keywords: household room air conditioner; user groups; running time; Gini coefficient; building
energy flexibility

1. Introduction

The energy consumption of building operations accounts for 18% of the total building
energy consumption in China, with HVAC systems/devices accounting for more than 60%
of the energy consumption [1,2]. Due to their easy installation, flexible control and reliable
performance, split-type room air conditioners (RACs) are widely used as decentralized
units to maintain comfortable indoor environments in residential buildings. RAC energy
use varies in residential buildings diversely depending on individual behaviors [3–5],
resulting in difficulties in energy management and prediction at the regional level. In
China’s hot summer and cold winter (HSCW) zone, the unique climate with pronounced
seasonal differences results in a huge RAC usage demand in both summer and winter. As
a result, the total number of owned RACs reached 540 million in China in 2020, with an
average of more than two RACs installed in per household in the HSCW zone [6].

Since the electricity consumed by RACs accounts for a large portion of total electricity
consumption in the HSCW zone, especially in cooling and heating seasons, it is essential
to classify household user groups based on their RAC usages at the regional level in
order to better balance regional power supply and fulfill the energy flexibility target
in future buildings [7–9]. Regarding demand-side flexibility, the utilization of building
HVAC systems are considered as schedulable loads, similarly to washing machines and
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dishwashers [10]. For example, Newsham et al. [11] analyzed the reductions in RACs’
peak loads of peak-saver households and highlighted the influence of household types
on the flexibility potential. The strategies of demand response in HVAC systems are pre-
cooling/heating, temperature reset, and energy storage techniques [12–14]. Therefore, it is
necessary to understand the RAC usage demands to determine building flexibility potential
and guide the adaptation of demand response strategies [15].

Classifying household RAC user groups is a key to identify the distribution of RAC
usage demand, which can distinguish the high RAC demand households from the low
RAC demand households in a region. The existing studies have classified household RAC
user groups at the regional level by various indicators. For example, Yan and Liu [16]
proposed a prediction model for the cooling energy use of residential ACs and classified the
household AC users into six groups, according to the frequency of AC operation. Using the
annual electricity bill as an indicator, Ren et al. [17] surveyed 341 households in Shanghai,
China, and grouped the household AC users into three categories. Xue et al. [18] proposed
a framework for predicting short-term energy consumption and identified three typical
RAC groups in residential buildings by clustering derived indicators from running time,
temperature and energy consumption. Malik et al. [19] adopted the K-means method to
cluster residential AC users into six groups by considering load profiles during summer
peak demand periods in Australia. Generally, the classifications of RAC user groups were
commonly identified by users’ RAC energy loads and operation parameters.

RAC energy loads in households are closely related to occupant operation behaviors
and consequential operation parameters. The behavior-related indicators in the RAC opera-
tion phase often include turning on/off, operation schedule, running time and temperature
setpoints [18,20–28]. Running time that describes the duration of RAC operation is often
regarded as a consequence of the behaviors of turning on/off and operation schedule.
Recent studies have examined the relationship between RAC energy consumption and
operation parameters. Ouyang and Hokao [29] conducted a series of surveys about oc-
cupants’ behaviors in 124 households to evaluate the household energy-saving potential.
They found that both the higher temperature setpoints and less running time could result in
RAC energy conservation. Rinaldi et al. [30] investigated occupant behaviors in residential
buildings via online questionnaire surveys and reported that the temperature setpoint and
running time were the major contributors to the increasing energy consumption of house-
hold heating. However, Ren et al. [17] conducted a questionnaire-based study and found
that the variation in AC energy consumption was primarily contributed by AC running
time rather than temperature setpoints in the examined households in Shanghai, China.
Similarly, by investigating AC usage of 34 households in summer across three climate zones
of China, Liu et al. [26] concluded that AC energy consumption was strongly correlated
with running time but weakly correlated with temperature setpoints. An et al. [31] collected
the long-term AC cooling usage data in residential buildings and found a significantly
positive correlation between the cooling energy and the running time. As a result, bene-
fiting from the consistency and robustness, the running time of RACs has been found to
be one of the most influential indicators to represent both the RAC energy consumption
and operation behaviors with less uncertainty regarding individual setting preferences and
RAC cooling/heating capacity.

RAC running time has been proven to be an effective indicator for identifying RAC us-
age patterns. For example, Kindaichi et al. [32] measured the operation data of 87 RACs and
proposed a “representative time” to classify the RAC usage patterns by considering both
occupancy schedules and individual running time. The results showed that a 20% reduction
in RAC running time could result in a 40% reduction in average RAC energy consumption.
Xia et al. [22] monitored AC on/off status from 102 bedrooms by smart power sockets, and
three behavior patterns were identified by factors including the daily on/off times, the
duration of each operation and AC run-over-night probability. Zhou et al. [33] conducted
a survey involving 210 residents and found that the AC usage mode could be classified
into five groups by considering the time of use, temperature setpoint and running time. An
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et al. [31] collected the AC operation characteristics from 324 households in three buildings
and recognized AC usage patterns by key performance indicators (KPIs), including total
running time and daily running time and other five indicators. RAC running time has
been widely used as an indicator to identify RAC use patterns in the current studies so
as to imply the underlying energy-saving potential, yet few studies have investigated the
effectiveness of applying running time on classifying RAC user groups to distinguish the
rigid and flexible energy demand of RACs from the temporal perspective. Meanwhile,
the majority of the existing studies focused on investigating the impact of RAC running
time at the building level or the community level, whereas using running time to classify
RAC users and their corresponding demands in a region will be of benefit to the regional
demand-side energy management and prediction. Hence, this study aims to propose a
method of classifying household RAC user groups by focusing on RAC running time at the
regional level.

In this study, the data-driven method is applied innovatively and running time is
used as a single indicator to classify the household RAC user groups at regional level. The
data-driven method has been widely applied in building-related statistical analysis [34,35].
The main objectives of this study include: (1) verify the feasibility of using RAC running
time to represent RAC energy demand at the regional level; (2) propose methods to utilize
running time to quantitively classify household RAC users into different groups, namely
Lower/Lower Middle/Upper Middle/Upper demand groups. The structure of the re-
maining paper is as follows: Section 2 describes the data and methods. Section 3 presents
results of the classification of four RAC user groups. Section 4 discusses the similarities
and differences between different groups and their change trends.

2. Methods and Data Description

The data-driven method for classifying RAC users is determined by the statistical
distribution of the datasets. An et al. [31] concluded that the distribution of the total cooling
consumption of individual household and the aggregate operating hours of pre-installed
fan-coil units were represented as exponential distributions. However, the statistical
distribution of the annual RAC running time data has been rarely analyzed. To determine
the proper method for segmenting users by running time, this study first preprocessed
the data and explored the statistical distribution of the running time data at the regional
level. Based on the characteristics of running-time data, the piecewise distribution was
confirmed by the Kolmogorov–Smirnov (K-S) test, and various mechanisms for the methods
of classifying the Lower and Upper Class user groups were proposed. The framework
of classification methods is shown in Figure 1. Specifically, the Lower Class user group
was determined by the Gini coefficient and the absolute poverty line of running time,
while the Upper Class user group was determined by the scaling region in the power-law
distribution. Meanwhile, Lower Middle Class and Upper Middle Class was segmented
by the mean value of the Middle Class group. The classification methods are explained in
detail in the following sections.

2.1. Data Description

The database was the real-time log of RAC operations reported back by each module
of household RACs from the AC manufacturing enterprise. About 196 million records from
1 June 2016 to 31 May 2017 in China’s HSCW zone were extracted from the database, and
the records included the information of users’ adjustment timing and equipment response.
Meanwhile, the hourly outdoor temperatures during this data-collection period were taken
from NOAA online climate data [36]. To better interpret the temporal information from the
original data, this study developed a Python module to restore the device time stamp to the
time period information, detecting and processing both hard faults (protocol fault flag) and
soft faults (heartbeat data loss) simultaneously. As a result, the valid data of 5009 RACs
was structured with adjusted action information.
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Figure 1. The framework to classify household RAC user groups by running time.

After data processing, the K-S test was performed and it was found that the running-
time data distribution failed to satisfy any of the normal, lognormal, Weibull, exponential
and gamma distributions. To examine the statistical distribution of regional running-time
data, a correlation analysis was first performed in this study to evaluate the correlation
between RAC running time and RAC energy consumption. For the correlation analysis,
approximately 300 samples containing both running time data and effective energy data
were extracted for the correlation analysis, as shown in Figure 2. Specifically, the data
extracted for the correlation analysis includes the yearly running time (YRT), the average
temperature difference between the outdoor temperature and RAC setpoints (MTD) and
the total power consumption (TPC). At the same time, due to the discrepancy in RAC
power sizing, the samples have been split into two categories to distinguish the difference
between Wall-Mounted RACs (the bedroom cases) and Floor-Standing RACs (the living-
room cases). Based on Figure 2, it can be seen that neither YRT nor TPC is found to be
normally distributed. The YRT and TPC show a decaying trend, and the MTD shows a
skewed distribution.

Buildings 2022, 12, x FOR PEER REVIEW 5 of 21 
 

 
Figure 2. Distribution and relationship among YRT, MTD and TPC in effective power samples. 

To evaluate the correlation between the YRT and TPC, the results of Pearson’s r and 
Spearman’s ρ among YRT, MTD, and TPC are shown in Table 1. Specifically, in bedroom 
cases, the Pearson’s r and Spearman’s ρ of YRT and TPC are greater than 0.8, implying a 
strong correlation between the YRT and TPC. In contrast, the correlation coefficients of 
the MTD and TPC in bedroom cases were found to be lower than 0.31, while the YRT and 
MTD presented the lowest correlation coefficients. However, in living-room cases, only 
the correlation between YRT and TPC was found to be significantly correlated. Therefore, 
the YRT is observed to be strongly correlated with the TPC, indicating that the YRT can 
be a reliable variable for identifying RAC users with different energy demands in both the 
bedroom and living-room cases at a regional level. Depending on the distribution of YRT 
data shown in Figure 2, RAC users were classified into Lower Class group and Upper 
Class group. 

Table 1. Correlation analysis among YRT, MTD and TPC in effective power samples. 

 Bedroom Cases Living-Room Cases 
 Pearson Spearman Pearson Spearman 
 r P ρ P r P ρ P 

YRT-TPC 0.8403 <0.01 0.8816 <0.01 0.9750 <0.01 0.9092 <0.01 
YRT-MTD 0.0907 0.0811 0.1052 0.0428 0.1481 0.3959 −0.0541 0.7578 
MTD-TPC 0.2824 <0.01 0.3098 <0.01 0.1615 0.3540 −0.0535 0.7602 

2.2. Lower Class Segmentation 
The aim of segmenting the Lower Class user group is to classify the users with rigid 

RAC demand, representing a low RAC demand for just satisfying minimum thermal com-
fort requirement due to personal or contextual reasons, such as income level [37–39]. In 
order to classify users with low RAC demand, this study adopted the method of the ab-
solute poverty line in economics [40]. The absolute poverty line in this study means the 
minimum requirement covering the essential thermal requirement in one year. In 

Figure 2. Distribution and relationship among YRT, MTD and TPC in effective power samples.



Buildings 2022, 12, 1415 5 of 21

To evaluate the correlation between the YRT and TPC, the results of Pearson’s r and
Spearman’s ρ among YRT, MTD, and TPC are shown in Table 1. Specifically, in bedroom
cases, the Pearson’s r and Spearman’s ρ of YRT and TPC are greater than 0.8, implying
a strong correlation between the YRT and TPC. In contrast, the correlation coefficients of
the MTD and TPC in bedroom cases were found to be lower than 0.31, while the YRT and
MTD presented the lowest correlation coefficients. However, in living-room cases, only
the correlation between YRT and TPC was found to be significantly correlated. Therefore,
the YRT is observed to be strongly correlated with the TPC, indicating that the YRT can
be a reliable variable for identifying RAC users with different energy demands in both
the bedroom and living-room cases at a regional level. Depending on the distribution of
YRT data shown in Figure 2, RAC users were classified into Lower Class group and Upper
Class group.

Table 1. Correlation analysis among YRT, MTD and TPC in effective power samples.

Bedroom Cases Living-Room Cases
Pearson Spearman Pearson Spearman

r P ρ P r P ρ P

YRT-TPC 0.8403 <0.01 0.8816 <0.01 0.9750 <0.01 0.9092 <0.01
YRT-MTD 0.0907 0.0811 0.1052 0.0428 0.1481 0.3959 −0.0541 0.7578
MTD-TPC 0.2824 <0.01 0.3098 <0.01 0.1615 0.3540 −0.0535 0.7602

2.2. Lower Class Segmentation

The aim of segmenting the Lower Class user group is to classify the users with rigid
RAC demand, representing a low RAC demand for just satisfying minimum thermal
comfort requirement due to personal or contextual reasons, such as income level [37–39].
In order to classify users with low RAC demand, this study adopted the method of the
absolute poverty line in economics [40]. The absolute poverty line in this study means the
minimum requirement covering the essential thermal requirement in one year. In addition,
to determine the absolute poverty line of running time, the Gini coefficient was introduced
to evaluate the inequality of running time distribution in a year, in order to identify the
essential periods of necessary RAC operations (the operating period with less inequality in
running-time distribution).

(1) Gini coefficient of running time.
Gini coefficient is commonly used to reveal the inequality through the Lorenz curve. It

is defined as “the ratio between the area that lies between the equality line and the Lorenz
curve over the total area under the equality line” [41,42]. It has been effectively applied
to measuring distribution inequality in various disciplines, such as economics, ecology,
engineering, human geography and biology [37,38,43]. Benefiting from the invariant and
bounded to the scale, the Gini coefficient is a better method to evaluate the inequality of
running time data due to the large span of the running time data, compared with other
methods, such as standard deviation and the coefficient of variation [44,45]. Therefore, a
low Gini coefficient in a certain month or hour represents little variation in RAC demand
in the period. The Gini coefficient of running time can be deduced by Equation (1).

G = 1−∑(pi − pi−1)(qi + qi−1) (1)

where pi is cumulative proportion of users from low to high running time and qi is cumula-
tive proportion of running time.

(2) Absolute poverty line of running time.
Using the Gini coefficient of users’ RAC running time, the absolute poverty line of

running time can be obtained. The value of the poverty line is affected by several factors,
such as region and year [40], so the absolute poverty line in this study is identified as the
running time of RACs that can meet users’ rigid demand within one year.
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The calculation principle of the absolute poverty line (lower running time) is as follows:
the whole year is divided into 12 × 24 grids to represent 12 months per year and 24 h
per day, and each grid represents user’s YRT in sum of a given hour of a given month.
In addition, a rigid demand month/hour (poverty line) is determined by whether the
Gini coefficient of a given month/hour is lower than the average monthly/hourly Gini
coefficient of a year. Therefore, the absolute poverty line of the running time is calculated
in Equation (2).

Tlower=
∑ T/Nu

12·24
×N

(
Gmi < Gmi

)
×N

(
Ghi < Ghi

)
(2)

where Tlower is the value of absolute poverty line of running time, T is YRT of each user,
Nu is the number of total users,Gmi is the monthly Gini coefficient, Gmi is the average
monthly Gini coefficient, Ghi is the hourly Gini coefficient and Ghi is the average hourly
Gini coefficient.

2.3. Upper Class Segmentation

The Upper Class user group is intended to identify those users who largely rely on
using RACs with long RAC running time. Considering the rationality and interpretability
of the piecewise distribution, the power–law distribution was selected to describe the
feature of the Upper Class user group (a small number of users dominating high running
time). The Upper Class was first distinguished through the determination of the scaling
region. Pareto distribution and Zipf’s law are examples of typical power functions. The
power–law distribution, which describes the inequality of event distribution [46–49], is
commonly defined as the probability density function of a random variable with distri-
bution approximately obeying the power function at a specific scale in fractal statistics.
Therefore, this study attempts to use the concept of power–law distribution to classify the
distribution of RAC running time data in the Upper Class group.

(1) Outlier detection.
Detecting and removing outliners from datasets are necessary to determine the scaling

region due to the negative impact on the accuracy. Particularly for linear regression, outliers
can significantly impact on determining the starting point of the maximum linear segment
of linear regression. This study adopted Sn’s outlier detection method [50], as shown in
Equation (3). Compared with Z-Score, IQR and MAD methods [44,51,52], Sn only relies on
the scale estimator instead of both position and scale to detect outliers.(

medj 6=i
∣∣xi − xj

∣∣
Sn

)
> λ where Sn = cnmedi=1:n

{
medj 6=i

∣∣xi − xj
∣∣} (3)

where xi = outlier if the median distance of xi from all other points is greater than λ times
the median absolute distance of other points and cn is a bias correction factor for finite
sample sizes.

(2) Scaling region identification.
The graph-test method is commonly applied to check whether the data match the

power-law distribution [53]. The scaling region is a suitable linear fitting region of data in
log-log coordinates. If the data in the log–log graph does not completely present a linear
relationship, it might imply that there was data failing to meet the power-law distribution
outside the scaling region [30]. To verify the power-law distribution, the goodness of fit
and residual analysis of linear regression under log–log coordinates were adopted in this
study, omitting the K-S test analysis due to its controversial applicability to the power-law
distribution [53].

Common methods for identifying the scaling region include the manual discrimination
method, fitting error method and second derivative method [54]. In this study, a joint
method combining the discrimination method and the prior knowledge of the fitting zero
through the pre-second derivative method is proposed. This joint method has improved the
calculation efficiency of the subsequent fitting error method and avoided the complex visual
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inspection process. The second derivative method enlarged the data range and provided
a priori knowledge for predicting the straight-line segment y = 0, but the disturbance at
y = 0 needs to be considered for the accuracy purpose [54]. To reflect the dispersion degree
of y = 0, this study identified discontinuous points using a series of methods, including
mean absolute error (MSE)/root mean square error (RMSE)/the forward search algorithm.
The MSE is derived in Equation (4), and the RMSE is derived by Equation (5). RMSE
reflected the degree of dispersion of y = 0 in more detail. In Equation (6), the forward
search algorithm suppressed the sensitivity brought by the second derivative method and
avoided the local optimal solution problem of the fitting error method.

MAE =
∑ |ln ′ ′rt− 0|

n
(4)

RMSE =

√
∑(ln ′ ′rt− 0)2

n
(5)

where ln ′ ′rt is the second derivative of running time in logarithmic form, n is the numbers
of users and f (xi) is the RMSE of each user rank.

f (xi) = min
i=n:1

[ f (xi), f (xi−1)], (6)

where x in decending order

3. Results
3.1. Lower Class Segmentation

This section presents the classification of the Lower Class users and identifies the
absolute poverty line of running time that satisfies the rigid demand of RAC use in a year.
Firstly, the proportion of users with RAC in operation in total users at a certain period
(Proportion of Users), the average cumulative running time (Avg. Cum. Time) and the Gini
coefficient of running time (Gini Coefficient) are summarized by month, hour and week
categories, as shown in Figure 3.

In the monthly category (Figure 3a,d,g), the Proportion of Users and the Avg. Cum.
Time are the highest in June, July and August among the year, whereas the Gini Coefficient
is the lowest. Among them, the difference in the Proportion of Users between bedroom
cases and living-room cases is tiny. In contrast, the Avg. Cum. Time of bedroom cases is
higher than that of living-room cases, especially in the summer. The Gini Coefficient of
bedroom cases is slightly lower than that of living-room cases in summer but higher in
winter. It reveals that the RAC demand was higher and more even in the summer period
for bedroom cases and the winter period for living-room cases.

In the hourly category (Figure 3b,e,h), the Proportion of Users and the Avg. Cum.
Time during daytime present little difference between bedroom cases and living-room
cases, but a significant can be seen in the Proportion of Users at nights in living-room cases,
which is also evidenced by the Gini coefficient. This indicates that the change trends of
RAC demand during the day are different between bedroom and living-room cases. In
the weekly category (Figure 3c,f,i), the Proportion of Users, the Avg. Cum. Time and the
Gini Coefficient present no apparent difference between weekdays and weekends for both
bedroom and living-room cases, indicating a little difference in RAC demand between
weekdays and weekends between bedroom and living-room cases.

As mentioned above, the Gini Coefficient was sensitively consistent with the changes
in RAC operation states (Proportion of Users and Avg. Cum. Time) on a monthly, hourly
and weekly basis, and it is then used as an indicator to identify the inequality in RAC usage
in this study.
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Figure 4a,b demonstrate the count and proportion of RAC running time data, suggest-
ing an attenuation distribution, while Figure 4c demonstrates the existence of a piecewise
distribution based on the log–log coordinate of rank size. To identify the Lower Class seg-
mentation, the absolute poverty line was deduced for both bedroom and living-room cases
and shown in Figure 4d. The absolute poverty line results in the large dots representing
Lower Class users. Specifically, the annual running time in the Lower Class group is 2.53
and 1.71 days for bedroom and living-room cases, accounting for 15.67% and 15.10% of
total users, respectively. It indicates that about 15% of RAC users in China’s HSCW zone
operate RACs only to meet their rigid thermal demand annually.

3.2. Upper Class Segmentation

Based on the log–log coordinate of rank size, Figure 5(1-1) and Figure 6(1-1) presented
the scaling region (large dots—excluding the Lower Class proportion) of bedroom and
living-room cases. Due to the data distribution feature, the Lower Class part was omitted
from the Upper Class classification process to improve the robustness. Outlier detection
was conducted to detect cumulative errors in the data. Specifically, the error of heartbeat
data loss, which describes the data loss due to incompatible action intervals and heartbeat
time, was filtered and deleted by detecting the incomplete start and end time. Here, the
algorithm Sn in Equation (6) was used to detect outliers (λ = 5), and the result of outlier
detection is presented in the dark-red color in Figure 5(1-2), which accounts for 2.67% of the
original data. Processed using the same method, the results of Upper Class segmentation
in living-room cases are shown in Figure 6. The number of outliers accounted for 2.81% of
the original data.
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The scaling region was further derived by the second derivative method. The global
and local first derivative (Figure 5(2-1),(2-2)) showed that the slope of the data trend changes
greatly. The second derivative enlarged the data gap and provided a priori knowledge
for predicting the straight-line segment y = 0. As a result, the second derivative of the
maximum linear segment was found to fluctuate slightly near 0, and the impact of low-
ranking disturbances was greater than that of post-ranking disturbances. However, it might
be hard to directly determine the maximum straight line nodes from the second derivative,
as shown in Figure 5(3-1),(3-2).

Moreover, the RMSE analysis was also found to present a weak interpretation of distin-
guishing the segmenting points of the data, though the results implied the potential existence
of the segment with a significant growth in the R2 value, as shown in Figure 5(2-3),(2-4).
Hence, the forward minimum algorithm (referring to Equation (6), lnR = 6.0) was used to
find out the maximum straight line, which contained the most data and the least disturbance,
as demonstrated in Figure 5(3-3),(3-4).

Therefore, the scaling region of the power-law distribution was obtained by the data
linear fitting, as shown in Figure 5(4-1). The regression equation was y = −0.4772x+ 6.7738,
r = −0.9993, and the Upper Class accounted for 12.24% of the total RAC users. Figure 5(4-2)
was the residual plot of linear fitting, which presented a sine function-like pattern around
the fitting result. In Figure 6(4-1), the regression equation was y = −0.4397x + 5.7167,
r = 0.9985, and the Upper Class accounted for 12.52% of the total RAC users.

To sum up, based on the results of Upper Class classification, the annual running time
of the Upper Class group are 105.19 and 54.10 days for bedroom and living-room cases.
The number of users that are categorized into the Upper Class group account for 12.26%
and 12.52% of the total RAC users at the region, respectively. This implies that, based on
the regional data examined in this study, about 12% of users in China’s HSCW zone belong
to the Upper Class with high RAC usage demand, while the annual RAC running time of
bedroom cases is twice longer than living-room cases.
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3.3. Summary of RAC User Classification

This study segments RAC users as Lower and Upper Class groups, thus the proportion
of Middle Class users reached 73%. In order to better observe the discrepancy of RAC
usage demand among Middle Class users, they were divided into Lower Middle and Upper
Middle Class groups by the average running time of Middle Class users. A discussion on
the changing trends of four user groups would be presented in the next section. Figure 7
summarizes the results of RAC user classification by running time for bedroom and living-
room cases. This study identified four RAC-user classes in the HSCW zone, including
Lower/Lower Middle/Upper Middle/Upper Class, accounting for around 15%, 42%,
31% and 12% of the total RAC users, respectively, as shown in Table 2. The classification
proportions present similar composition in bedroom and living-room cases, which might
be a result of the consistency with the outdoor climates.
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Table 2. Class segmentation proportions in bedroom and living-room cases.

Lower Class Lower
Middle Class

Upper
Middle Class Upper Class

Bedroom cases 15.67% 39.79% 32.30% 12.24%
Living-room cases 15.10% 43.12% 29.26% 12.52%

4. Discussion

This study proposed a method to classify users with distinct RAC demands at a
regional level by using the indicator of RAC running time, and the method was applied
to identify RAC user groups in China’s HSCW zone based on 196 million records from
5009 RACs. Based on the four class groups identified above, the RAC usage intensity
and usage distribution of different classes and the implications and limitations of the
classification are discussed in this section.
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4.1. RAC Usage Intensity of Different User Classes

The usage intensities of four RAC user classes in bedroom and living-room cases are
shown in Figures 8 and 9, respectively.
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Figure 8. Comparison of four classes in RAC users in bedroom cases. (a) monthly proportion of
users; (b) hourly proportion of users; (c) weekly proportion of users; (d) monthly average cumulative
time; (e) hourly average cumulative time; (f) weekly average cumu-lative time; (g) monthly Gini
coefficient; (h) hourly Gini coefficient; (i) weekly Gini coefficient.

The annual trends of running time in bedroom and living-room cases are similar, for
example, RACs were used more in summer and winter seasons but less in transitional
seasons, as shown in Figure 8a,d,g and Figure 9a,d,g. Meanwhile, RAC users in different
user-class groups showed obvious differences in RAC usage demand during the winter
season. It is also noted that some users in the Lower Class group only used their RACs in
the summer period.

Moreover, the pattern of daily RAC use intensity varies between bedroom and living-
room cases, as shown in Figure 8b,e,h and Figure 9b,e,h. Meanwhile, RAC users in four
user-class groups experienced large differences in the RAC usage intensity at midnight.
Interestingly, the RAC users in the Upper Class group who were supposed to use more
RACs in daytime are found to use less RACs during the midnight in both bedroom and
living-room cases. As shown in Figure 8b, the proportion of users in the Lower Class group
was found to be higher at the midnight and noon but lower in morning and afternoon
periods in bedroom cases. A similar result was also supported by An et al. [31] who found
that the daily trend of turning on AC was consistent with Cluster 1 in the bedroom by
clustering analysis.
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However, three indicators presented fewer fluctuations weekly in both bedroom and
living-room cases, as shown in Figure 8c,f,i and Figure 9c,f,i. Xia et al. [22] also reported
little difference was found between the RAC operation rate in weekdays and weekends.

4.2. Usage Distribution of Different Classes

To compare the difference in the distribution features among four class groups,
Figures 10 and 11 illustrate the cross comparison of five RAC running-time indicators
(Pcur stands for proportion of current users, Tcur is accumulated time of current users, Gcur
is Gini Coefficient of current users, Tall is accumulated time of all users and Gall is Gini
Coefficient of all users) and four user groups (Lower/Lower Middle/Upper Middle/Upper
Class) in monthly and hourly periods. In the heatmaps, each time grid represents the indi-
cator in the sum of a specific hour (horizontal axis) of a given month (vertical axis). The
darker the color of the grid, the greater the value. Generally, the color of grids becomes
darker from Lower Class category to Upper Class category regarding the proportion of
current users, accumulated time of current users, Gini Coefficient of current users and the
accumulated time of all users.

To clarify the similarities and differences in RAC operation demand among user-class
groups in bedroom and living-room cases, Table 3 summarizes the seasonal periods with
the maximal and minimal values of the five running-time indicators (“S” stands for summer
season from June to September, “W” stands for winter season from December to February
and “T” stands for a transitional season with other months) and periods (“D” stands for
daytime from 7:00 to 18:00, “E” stands for evening from 19:00 to 22:00 and “N” stands for
night from 23:00 to 06:00). For example, “S-W” means summer daytime, that is 7:00–18:00
in June to September.



Buildings 2022, 12, 1415 15 of 21Buildings 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 
Figure 10. Heatmap of usage distribution of different classes in bedroom cases. Figure 10. Heatmap of usage distribution of different classes in bedroom cases.



Buildings 2022, 12, 1415 16 of 21Buildings 2022, 12, x FOR PEER REVIEW 16 of 21 
 

 
Figure 11. Heatmap of usage distribution of different classes in living-room cases. Figure 11. Heatmap of usage distribution of different classes in living-room cases.



Buildings 2022, 12, 1415 17 of 21

Table 3. The maximal and minimal values of five indicators in different periods.

Pcur Tcur Gcur Tall Gall
Max Min Max Min Max Min Max Min Max Min

Bedroom cases

Lower Class S-E T-N S-N T-D S-E T-N S-N T-N T-N S-N
Lower Middle Class S-N T-N S-N T-N T-D T-N S-N T-N T-D S-N
Upper Middle Class S-N T-D S-N T-E T-D S-N S-N T-N T-D S-N

Upper Class S-D T-N S-N T-E T-E S-N S-N T-N T-N S-N

Living-room cases

Lower Class S-E T-N S-N T-N S-D T-N S-E T-N S-N T-N
Lower Middle Class S-E T-N S-E T-D T-E T-N S-E T-N T-N S-E
Upper Middle Class S-E T-N S-E T-N T-D T-N S-E T-N T-N S-E

Upper Class S-E T-N S-E T-D T-D S-E S-E T-N T-N S-N

In summary, the rigid demand of Lower Class users was concentrated in summer
nights in bedroom cases, while users in other classes had the longest accumulated time
during summer nights. Meanwhile, the RAC demand in summer daytime was limited in
Lower Class users. Furthermore, increasing RAC usage was observed from Lower Class
group to Upper Class groups in summer daytime. In living-room cases, the distribution of
RAC usage demand was similar among the four user-class groups. The period with the
highest proportion of users was found in summer evenings, while the lowest value was
found in transitional nights. The longest accumulated time of RAC operation was found
in summer evenings except for in the Lower Class group, where the longest accumulated
time was in summer nights.

4.3. Implications for Regional Energy Management

RAC running time has been proven in this study to represent the overall trend of
RAC power consumption and usage demand in China’s HSCW zone. At the regional level,
the novelty of this study is that it proposes a method of classification of different user
groups with different energy usage demands based on a single index—the running time of
RACs—and examines the difference between rigid and flexible demand. This classification
method can also be utilized in other regions. As the global temperature rose this year, the
global power load of RACs increased during the summer. For example, this method could
be used for regional energy regulation in European countries. In addition, the running time
of other energy supply systems besides RACs can be taken into account, such as the energy
usage demand of winter heating systems.

The RAC operation periods identified for satisfying rigid demand in the Lower Class
group can hardly be reduced, as the further reduction might affect people’s rigid thermal
comfort expectation and the living quality of avoiding excessive warmth and coldness.
Moreover, the Upper Class group was identified with flexible RAC operation periods and
could be used to determine the schedulable time window for the purpose of building energy
flexibility management. As mentioned in Section 4.2, the monthly periods of rigid RAC
demand are June, July and August. In bedroom cases, the hourly periods of rigid demand
are 21:00–6:00. In living-room cases, the hourly periods of rigid demand are 11:00–22:00.
Hence, 21:00–22:00 is the overlapping hourly period of rigid demand for both bedroom
and living-room cases. Therefore, securing the regional power load during 21:00–22:00 in
summers is crucial for maintaining the rigid living comfort of RAC users. Based on the
RAC running time at the regional level, this study suggests the regional power supply
should satisfy the RAC running period for rigid demand and then attempt to exploit the
energy flexibility potential in the period with flexible demand.

The flexible energy of a building/buildings is an active area in terms of demand-side
response, it is defined as single or cluster of buildings able to manage the energy demand
with consideration of local climate conditions, user needs and grid requirements in IEA
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Annex 67 [55]. In order to better manage the energy demand of household RACs, the
flexible demand of RAC can be understood as RAC usage that can be be shifted or shed
or modulated. To explore the flexibility potential of each class group, the unit demand of
running time-based RAC is calculated in Equation (7).

Dunit =
Tmax

Cavg
(7)

where Dunit is unit demand of each class, Tmax is the max anuual running time of each class
and Cavg is the average capacity of each class. Generally, the capacities of RACs in bedroom
cases comprise 2.6 kW/3.2 kW/3.5 kW and the capacities in living-room cases comprise
5.1 kW/7.2 kW.

The results of Equation (7) are listed in Table 4. The rigid unit demand (Lower Class) is
19.78 h/kW (bedroom cases) and 6.46 h/kW (living-room cases). In bedroom cases, the flexi-
ble unit demands of Lower Middle/Upper Middle/Upper Class are 7.55/19.42/128.10 times
that of the rigid unit demand. In addition, in living-room cases, the flexible unit demands
of Lower Middle/Upper Middle/Upper Class are 6.09/16.99/211.53 times that of rigid
unit demand. Similar findings of flexibility, such as delayed flexibility and forced flexibility
that based on the 24-h day can also be seen in Chen et al. [10]. In general, the flexibility
potential increases gradually from Lower to Upper Class. In Middle Class, the flexibility
potential of bedroom and living-room cases is similar. However, the flexibility potential
of the living room cases is twice that of the bedroom cases in the Upper Class. The Upper
Class users account for a small proportion but dominate extremely high RAC running time.
The reason may be that this group has unique RAC preference and a high usage demand.
So, the flexibility potential of the Upper Class needs further study, although their unit
demand value is the highest.

Table 4. Unit demand of different classes in bedroom and living-room cases.

Unit Demand
(h/kW) Lower Class Lower

Middle Class
Upper

Middle Class Upper Class

Bedroom cases 19.78 149.33 384.31 2533.84
Living-room cases 6.46 39.36 109.73 1366.5

4.4. Limitations

The samples in the database are from China’s HSCW zone. The buildings used as
samples were all constructed after 2005, and their energy-saving design standards in China
are consistent. Therefore, the analysis results are less affected in this study by climate,
building age and occupant heat condition. However, the main limitation of this study is
that the warehouse data were collected in three cities in China’s HSCW zone. The results
might not be applicable for other regions; however, the method proposed by this study
can be adopted as a reference to identify user group class in other regions. Moreover, the
raw dataset contains missing values within a certain period. Although different protocols
were combined to restore the data, there may be inevitable systematic errors. A further
investigation on the analysis of behavior patterns is recommended in order to further reveal
the interrelationship between behavior patterns and user classes.

5. Conclusions

By adopting the data-driven method and using running time as an indicator, this
study classifies the household RAC user groups and identifies the RAC usage demand of
households in hot summer and cold winter zone of China. A total of 196 million annual
real-time tracking records from 5009 household RACs were extracted from the database in
three representative cities (Chongqing, Wuhan and Shanghai) in the HSCW zone of China.
The main conclusions are summarized as follows:
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1. This study proposes data-driven methods to classify RAC user groups by running time
over a year at regional level from novel perspectives. On the one hand, a few RAC
users in the Lower Class, which is identified by the absolute poverty line with the Gini
coefficient of annual running time distribution. On the other hand, a small number
of the Upper Class group is distinguished through the determination of the scaling
region in the power-law distribution.

2. Based on the case study in the HSCW zone of China, the annual trends of running times
in bedroom and living-room cases are similar, thus the Lower/Lower Middle/Upper
Middle/Upper Class groups account for around 15%/42%/31%/12% of the total RAC
users, respectively. In general, the flexibility potential increases gradually from Lower
to Upper Class.

3. Among all classes, RACs are used more in summer and winter seasons but less in
transitional seasons. Meanwhile, RAC users in different user-class groups show ob-
vious differences in usage demand in the winter season. Overall, the summer season
has the most RAC monthly rigid demand periods over the year, both in bedroom and
living-room cases.

4. The patterns of daily RAC use intensity of four classes are different between bed-
room and living-room cases, especially in midnight. In addition, 21:00–22:00 is the
overlapping hourly rigid demand period for both bedroom and living-room cases.
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