Probabilistic Models for the Tensile Properties of Split Boards and Their Application for the Prediction of Bending Properties of Engineered Timber Products Made of Norway Spruce
Abstract
:1. Introduction
2. Probabilistic Board Model
2.1. Board Databases
2.2. Model Specifications
βij | regression coefficients (−) |
board width ratio factor (−) , with ; see Table 3 and Table 4 | |
separation ratio factor (−); , with ; see Table 3 and Table 4 | |
board width (mm) | |
residual board width (mm) | |
error term; (−) | |
reference value (mm); (%); (−) |
2.3. Board Generation Process
2.4. Board Mechanical Properties
2.5. Validation of the Probabilistic Board Model
2.5.1. Boards with a Full Cross-Section
2.5.2. Boards in Split Condition
2.6. Probabilistic Characterization of Finger Joints and Distances of Finger Joints
3. Probabilistic Numerical Beam Model
3.1. Principles of the Probabilistic Numerical Model
3.2. Beam Generation and Simulation Process
3.3. Validation of the Probabilistic Numerical Beam Model on Glulam
4. Resawn Glulam Beams
4.1. Glulam in Split Condition
4.2. Comparison with Previous Investigations
4.3. Modeling the Bending Strength of Resawn Glulam Beams
4.3.1. Model Based on the Tensile Strength Parallel to the Grain of Split Boards
4.3.2. Model Based on the Bending Strength of Glulam Beams and the Tensile Strength Parallel to the Grain at Full Cross-Sections
5. Investigations on Flex_GLT Beams of Type B
5.1. System and Size Effects in the Context of Bending Strength
5.1.1. General Background and Overview on the Reasons for System and Size Effects in flex_GLT Type B Beams
5.1.2. Positioning of Board Edges between the Layers
5.1.3. Influence of Beam width (Parallel System Effect)
5.1.4. Influence of Beam Depth (Depth Effect)
5.2. Prediction of the Bending Strength of Flex_GLT Type B Beams
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fink, G.; Kohler, J.; Brandner, R. Application of European design principles to cross laminated timber. Eng. Struct. 2018, 171, 934–943. [Google Scholar] [CrossRef]
- Köhler, J. Reliability of Timber Structures. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2007. [Google Scholar]
- Ehlbeck, J.; Colling, F.; Görlacher, R. Einfluss keilgezinkter Lamellen Biegefestigkeit Brettschichtholztraeger: Eingangsdaten fuer das Rechenmodell. Holz als Roh-und Werkstoff 1985, 43, 369–373. [Google Scholar] [CrossRef]
- Isaksson, T. Modelling the Variability of Bending Strength in Structural Timber: Length and Load Configuration Effects. Ph.D. Thesis, Lund Institute of Technology, Lund, Sweden, 1999. [Google Scholar]
- Källsner, B.; Ditlevsen, O. Lengthwise bending strength variation of structural timber. In Proceedings of the IUFRO—Timber Engineering, Sydney, Australia, 5–7 July 1994; p. 9. [Google Scholar]
- Ditlevsen, O.; Källsner, B. System effects influencing the bending strength of timber beams. In Proceedings of the IFIP 8th WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, Krakow, Poland, 11–13 May 1998. [Google Scholar]
- Fink, G. Influence of Varying Material Properties on the Load-Bearing Capacity of Glued Laminated Timber. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2014. [Google Scholar]
- Frese, M. Computergestützte Verfahren zur Pragmatischen Beurteilung der Tragwiderstände von Brettschichtholz: Zusammenfassung Exemplarischer Simulationsstudien; Habilitation; KIT Scientific Publishing: Karlsruhe, Germany, 2016. [Google Scholar]
- Brandner, R. Stochastic Modelling in Timber Engineering; Habilitation, Graz University of Technology: Graz, Austria, 2018. [Google Scholar]
- EN 14080:2013; Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements. European Committee for Standardization: Brussels, Belgium, 2013.
- ON B 1995-1-1:2019; Eurocode 5: Bemessung und Konstruktion von Holzbauten: Teil 1-1: Allgemeines—Allgemeine Regeln und Regeln für den Hochbau. Austrian Standards Institute: Vienna, Austria, 2019.
- Colling, F. Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von den Festigkeitsrelevan-Ten Einflussgrößen. Ph.D. Thesis, Universität Fridericiana zu Karlsruhe, Karlsruhe, Germany, 1990. [Google Scholar]
- EN 14081-1:2016; Timber Structures—Strength Graded Structural Timber with Rectangular Crosssection: Part 1: General Requirements. European Committee for Standardization: Brussels, Belgium, 2016.
- Cleason, T. Hallfasthet hos “Klycbalkar”; 2003. [Google Scholar]
- Crocetti, R. Strength of Split Glulam Beams; 2009. [Google Scholar]
- Viguier, J.; Boquet, J.-F.; Dopeux, J.; Bléron, L.; Dubois, F.; Aubert, S. Strength Grading of Split Glulam Beams; International Network on Timber Engineering Research: Bath, UK; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Gemany, 2014. [Google Scholar]
- Kastner, E.; Schickhofer, G.; Brandner, R.; Unterwieser, H. Untersuchung der Auswirkung des Längsweisen Auftrennens auf das Mechanische Potenzial von Brettschichtholzlamellen und Daraus Aufgebauten Brettschichtholzträgern, Hinsichtlich Ihrer Festigkeit und Steifigkeit; Graz University of Technology: Graz, Austria, 2011. (In German) [Google Scholar]
- Schickhofer, G.; Augustin, M. Project Intelliwood: Working Package 3: ‘Strength Correspondence’; Report LR 9808/4; Institut für Holzbau und Holztechnologie, Technische Universität Graz: Graz, Austria, 2001. [Google Scholar]
- EN 408:2012; Timber Structures—Structural Timber and Glued Iaminated Timber—Determination of Some Physical and Mechanical Properties. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 384:2016; Structural Timber—Determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardization: Brussels, Belgium, 2016.
- Fink, G.; Kohler, J. Zerstörungsfreie Versuche zur Ermittlung des Elastizitätsmodules von Holzbrettern; Eth Zürich: Zürich, Switzerland, 2012. [Google Scholar]
- EN 338:2016; Structural Timber—Strength Classes. European Committee for Standardization: Brussels, Belgium, 2016.
- ON DIN 4074-1:2012; Sortierung von Holz nach der Tragfähigkeit: Teil 1: Nadelschnittholz. Austrian Standards Institute: Vienna, Austria, 2012.
- Olsson, A.; Briggert, A.; Oscarsson, J. Increased yield of finger jointed structural timber by accounting for grain orientation utilizing the tracheid effect. Eur. J. Wood Prod. 2019, 77, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Wolfram Research, Inc. Mathematica; Wolfram Research, Inc.: Champaign, IL, USA, 2021. [Google Scholar]
- Fink, G.; Frangi, A.; Köhler, J. Modelling the bending strength of glued laminated timber—Considering the natural growth characteristics. In Proceedings of the 46th Meeting, International Council for Research and Innovation in Building and Construction, Working Commission W18—Timber Structures, Vancouver, BC, Canada, 26–29 August 2013; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Gemany, 2013; pp. 211–225. [Google Scholar]
- Rebonato, R.; Jaeckel, P. The Most General Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes; Quantitative Research Centre of the NatWest Group: Edinburgh, Scotland, UK, 2011. [Google Scholar]
- ON EN 1995-1-1:2019; Eurocode 5: Design of timber structures—Part 1-1: General-Common Rules and Rules for Buildings (Consolidated Version). Austrian Standards Institute: Vienna, Austria, 2019.
- Brandner, R. Stochastic System Actions and Effects in Engineered Timber Products and Structures. Ph.D. Thesis, Verlag der Technischen Universität Graz, Graz, Austria, 2013. [Google Scholar]
- EN 1194:1999; Timber Structures—Glued Laminated Timber—Strength Classes and Determination of Characteristic Values. European Committee for Standardization: Brussels, Belgium, 1999.
- Burger, N. Einfluß der Holzabmessungen auf die Festigkeit von Schnittholz unter Zugbeanspruchung in Faserrichtung. Ph.D. Thesis, Shaker-Verlag, München, Germany, 1998. [Google Scholar]
- Brandner, R.; Schickhofer, G. Length Effects on Tensile Strength in Timber Members With and Without Joints. In Materials and Joints in Timber Structures: Recent Developments of Technology; Aicher, S., Reinhardt, H.-W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 751–760. ISBN 978-94-007-7810-8. [Google Scholar]
- Scherfler, J. Versuchstechnische Ermittlung des Längsweisen Auftrennens auf die Zugeigenschaften von Festigkeitssortierten Brettern; Masterprojekt; Technische Universität Graz: Graz, Austria, 2022. [Google Scholar]
- Brandner, R.; Schickhofer, G. Glued laminated timber in bending: Thoughts, experiments, models and verification. In Proceedings of the 11th World Conference on Timber Engineering, Trentino, Italy, 20–24 June 2010. [Google Scholar]
- Riberholt, H. Nordic Glulam—Mechanical Properties; 2008. [Google Scholar]
- Ehlbeck, J.; Colling, F. Biegefestigkeit von Brettschichtholz in Abhängigkeit von Dichte, Elastizitätsmodul, Festigkeit und Keilzinkungen der Lamellen, der Lage der Keilzinkungen sowie von der Trägerhöhe.: Teil A; Karslruher Untersuchungen; Universität Fridericiana Karlsruhe: Karlsruhe, Germany, 1987. [Google Scholar]
- Blaß, H.J.; Frese, M.; Glos, P.; Denzler, J.K.; Linsenmann, P.; Ranta-Maunus, A. Zuverlässigkeit von Fichten-Brettschichtholz mit Modifiziertem Aufbau; Technische Informationsbibliothek u. Universitätsbibliothek; Universitätsverlag: Hannover, Karlsruhe, 2008; ISBN 9783866442511. [Google Scholar]
- Ansys®. Ansys Mechanical; ANSYS, Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Frese, M.; Blaß, H.J. Bending Strength of Spruce Glulam New Models for the Characteristic Bending Strength. In Proceedings of the 41th Meeting, International Council for Research and Innovation in Building and Construction, Working Commission W18—Timber Structures, St. Andrews, NB, Canada, 24–28 August 2008. [Google Scholar]
- Brandner, R.; Schickhofer, G. Glued laminated timber in bending: New aspects concerning modelling. Wood Sci. Technol. 2008, 42, 401–425. [Google Scholar] [CrossRef]
- Brandner, R.; Schickhofer, G. Probabilistic models for the modulus of elasticity and shear in serial and parallel acting timber elements. Wood Sci. Technol. 2015, 49, 121–146. [Google Scholar] [CrossRef]
- Sieder, R.; Brandner, R. A new probabilistic approach to model the tensile properties of split spruce boards and its application in engineered timber products. In Proceedings of the INTER 8th Meeting, Online, 16–19 August 2021. [Google Scholar]
- Colling, F. Brettschichtholz unter Biegebeanspruchung: STEP 3: Holzbauwerke nach Eurocode 5: Grundlagen, Entwicklungen, Ergänzungen; Informationsdienst Holz: Düsseldorf, Germany, 1995. [Google Scholar]
- Sieder, R.; Brandner, R. Tensile properties of lengthwise split boards and their application in engineered timber products. In Proceedings of the PhD Seminiar Stuttgart, Online, 11 March 2022. [Google Scholar]
DB | Main- & Sub-Series | Assigned Class 1 | Quantity (−) | Width wb (mm) | Thickness tb (mm) | Length lb (mm) | ||
---|---|---|---|---|---|---|---|---|
All | Cen 2 | |||||||
Schickhofer and Augustin [18] | I-CH | _1:semi:m | na 3 | 62 | 52 | 150 | 45 | 4450 |
_1:semi:s | 62 | 45 | ||||||
_1:semi:ss | 61 | 46 | 29 | |||||
II-AT | _1:vis | S10 | 45 | 39 | 150 | 35 | 3200 ÷ 4000 | |
_2:vis | S13 | 45 | 33 | |||||
_3:mach | MS13 | 45 | 40 | |||||
_4:mach | MS17 | 41 | 33 | |||||
_5:mach | MS13 | 16 | 14 | 230 | ||||
_6:mach | MS17 | 14 | 8 | |||||
III-AT | _1:vis | S10 | 45 | 38 | 110 | |||
_2:vis | S13 | 45 | 34 | |||||
_3:mach | MS10 | 45 | 44 | |||||
_4:mach | MS13 | 45 | 39 | |||||
_5:mach | MS17 | 44 | 40 | |||||
Kastner et al. [17] | separate | I | reject | 5 | 0 | 170 | 45 | 4000 |
II | L25 | 383 | 33 | |||||
III | L36 | 151 | 14 | |||||
Σ = | 1154 | 552 |
Group | GI (T14) | GII (T24) | ||
---|---|---|---|---|
ft,0,b | Et,0,loc,12,b | ft,0,b | Et,0,loc,12,b | |
number (−) | 320 | 160 | ||
mean (MPa) | 28.4 | 11,394 | 39.7 | 13,540 |
COV (%) | 31 | 16 | 25 | 16 |
x05,LN (MPa) | 15.5 | 8954 | 24.2 | 9194 |
β00 | β10 | β11 | β20 | β21 | σε | RefGI | RefGII | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
LWZ | E(X) | – | 0.40 | 0.60 | 0.60 | 0.60 | 0.036 | 100 | 80 | ||
COV(X) | 1.00 | – | – | – | – | 0.053 | 50% | 40% | |||
ρequi(X) | 1.00 | – | – | – | – | 0.053 | 0.10 | 0.16 | |||
tKARWZ | E(X) | – | 1.00 | −0.35 | 1.60 | 2.90 | 0.165 | 0.21 | 0.16 | ||
COV(X) | 1.00 | – | – | – | – | 0.075 | 50% | 40% | |||
ρequi(X) | 1.00 | – | – | – | – | 0.075 | 0.14 | 0.17 | |||
DWZ | E(X) | 0.95 | – | – | 0.60 | 2.10 | 0.115 | 500 | 600 | ||
COV(X) | 1.00 | – | – | 0.40 | 1.70 | 0.048 | 50% | 50% | |||
ρequi(X) | 1.00 | – | – | 0.40 | 1.70 | 0.048 | 0.20 | 0.10 | |||
LIZ | E(X) | 1.00 | – | – | 0.15 | 1.00 | 0.106 | 25 | |||
COV(X) | 0.95 | – | – | 0.35 | 1.00 | 0.114 | 45% | ||||
ρequi(X) | 0.95 | – | – | 0.35 | 1.00 | 0.114 | 0.09 | ||||
tKARIZ | E(X) | 1.00 | – | – | 1.30 | 1.90 | 0.156 | 0.04 | |||
COV(X) | 1.00 | – | – | 0.50 | 1.00 | 0.069 | 65% | ||||
ρequi(X) | 1.00 | – | – | 0.50 | 1.00 | 0.069 | 0.10 | ||||
DIZ | E(X) | 1.05 | – | – | 2.35 | 2.05 | 0.507 | 100 | 135 | ||
COV(X) | 1.00 | – | – | – | – | 0.046 | 95% | 95% | |||
ρequi(X) | 1.00 | – | – | – | – | 0.046 | 0.17 | 0.17 |
β00 | β10 | β11 | β20 | β21 | σε | RefGI | RefGII | |||
---|---|---|---|---|---|---|---|---|---|---|
LWZ–tKARWZ | 1.00 | – | – | 0.50 | 2.00 | 0.128 | 0.65 | |||
LWZ–DWZ | 0.90 | – | – | – | – | 1.329 | 0.04 | |||
LWZ–LIZ | 1.00 | 2.80 | 1.00 | – | – | 2.445 | 0.05 | |||
LWZ–tKARIZ | 0.25 | – | – | – | – | 4.064 | −0.03 | |||
LWZ–DIZ | 1.00 | – | – | −1.00 | 4.00 | 0.485 | −0.20 | |||
tKARWZ–DWZ | 0.85 | 2.80 | 1.00 | – | – | 3.536 | 0.03 | |||
tKARWZ–LIZ | 1.00 | – | – | – | – | 2.646 | 0.04 | |||
tKARWZ–tKARIZ | 1.00 | – | – | – | – | 11.97 | 0.01 | |||
tKARWZ–DIZ | 1.00 | – | – | −1.25 | 1.00 | 0.170 | −0.20 | |||
DWZ–LIZ | 1.00 | – | – | – | – | 2.080 | 0.04 | |||
DWZ–tKARIZ | 1.00 | – | – | – | – | 1.991 | 0.06 | |||
DWZ–DIZ | 1.00 | – | – | – | – | 0.239 | 0.40 | |||
LIZ–tKARIZ | 1.00 | – | – | −1.10 | 1.00 | 0.197 | 0.45 | |||
LIZ–DIZ | 1.00 | – | – | – | – | 0.382 | 0.25 | |||
tKARIZ–DIZ | 1.00 | – | – | −0.80 | 1.00 | 0.307 | 0.30 |
β0 | β1 | β2 | σε | |
---|---|---|---|---|
ft,0,ij | 2.96 | 8.50 × 10−5 | −2.22 | 0.20 |
Et,0,ij | 8.41 | 7.69 × 10−5 | −9.02 × 10−5 | 0.10 |
GI | GII | |
---|---|---|
EDYN,F,mean (MPa) | 11,500 | 14,000 |
COV(EDYN,F,ref) (%) | 13.0 | 13.0 |
Group | GI (T14) | GII (T24) | |||||||
---|---|---|---|---|---|---|---|---|---|
Width wb (mm) | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | |
ft,0,b | min (MPa) | 6.2 | 6.3 | 5.9 | 6.8 | 12.2 | 12.9 | 13.7 | 14.5 |
max (MPa) | 75.3 | 74.2 | 72.6 | 73.7 | 114.3 | 101.2 | 105.6 | 102.3 | |
mean (MPa) | 27.8 | 27.4 | 27.7 | 27.6 | 40.4 | 40.2 | 40.4 | 40.1 | |
COV (%) | 34.8 | 31.6 | 30.0 | 29.3 | 30.1 | 28.1 | 27.0 | 26.6 | |
x05,LN (MPa) | 14.4 | 15.3 | 15.9 | 16.0 | 23.6 | 24.4 | 25.1 | 25.2 | |
x05,LN/x05,LN,Ref1 (−) | 0.94 | 1.00 | 1.04 | 1.05 | 0.97 | 1.00 | 1.03 | 1.03 | |
Et,0,b | mean (MPa) | 10,454 | 10,442 | 10,485 | 10,486 | 12,988 | 13,008 | 13,062 | 12,992 |
COV (%) | 15.3 | 14.9 | 14.9 | 14.8 | 17.2 | 17.3 | 17.1 | 17.2 |
Group | GI (T14) | GII (T24) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Board Length lb (mm) | 900 | 1350 | 2000 | 2250 | 4000 | 900 | 1350 | 2000 | 2250 | 4000 | |
ft,0,b | mean (MPa) | 29.7 | 27.4 | 25.6 | 25.1 | 22.8 | 42.5 | 40.2 | 38.2 | 37.6 | 35.2 |
COV (%) | 32.3 | 31.6 | 31.6 | 31.3 | 31.2 | 28.1 | 28.1 | 28.0 | 27.7 | 27.4 | |
x05,LN (MPa) | 16.3 | 15.3 | 14.3 | 14.0 | 12.8 | 25.8 | 24.4 | 23.4 | 23.0 | 21.8 | |
x05,LN/x05,LN,Ref1(−) | 1.06 | 1.00 | 0.93 | 0.91 | 0.84 | 1.05 | 1.00 | 0.96 | 0.94 | 0.89 | |
Et,0,b | mean (MPa) | 10,477 | 10,442 | 10,454 | 10,446 | 10,456 | 13,009 | 13,008 | 13,014 | 12,994 | 13,014 |
COV (%) | 15.3 | 14.9 | 15.1 | 15.0 | 15.0 | 17.2 | 17.3 | 17.5 | 17.0 | 17.2 |
Kastner et al. [17] | Own Investigations | |||||
---|---|---|---|---|---|---|
ηs | 1 | 1/2 | 1 | 2/3 | 1/3 | |
ft,0,b | number (−) | 49 | 196 | 54 | 54 | 54 |
min (MPa) | 12.3 | 7.4 | 14.8 | 6.1 | 4.0 | |
max (MPa) | 40.4 | 42.7 | 71.6 | 73.8 | 69.0 | |
mean (MPa) | 23.8 (1.0) 1 | 22.1 (0.93) 1 | 41.5 (1.0) 1 | 37.4 (0.90) 1 | 34.2 (0.83) 1 | |
COV (%) | 25.5 (1.0) 1 | 28.4 (1.11) 1 | 40.6 (1.0) 1 | 46.5 (1.15) 1 | 52.8 (1.30) 1 | |
x05,LN (MPa) | 15.4 (1.0) 1 | 13.1 (0.85) 1 | 18.7 (1.0) 1 | 12.5 (0.67) 1 | 9.2 (0.49) 1 | |
Et,0,12 | mean (MPa) | 11,200 | 10,900 | 14,000 | 13,100 | 12,600 |
COV (%) | 8.8 | 9.1 | 18.6 | 16.8 | 11.9 | |
ρ12,b | mean (kg/m³) | 433 | 431 | 458 | 451 | 453 |
COV (%) | 7.5 | 8.1 | 8.7 | 8.2 | 11.9 |
Group | GI (T14) | GII (T24) | |
---|---|---|---|
ft,FJ | mean (MPa) | 29.2 | 36.0 |
COV (%) | 19.5 | 20.7 | |
x05,LN (MPa) | 20.8 | 25.2 | |
ft,0,b1 | mean (MPa) | 25.6 | 38.2 |
COV (%) | 31.6 | 28.0 | |
x05,LN (MPa) | 14.3 | 23.4 | |
ft,FJ,05,LN/ft,0,b,05,LN | 1.46 | 1.08 |
Group | GI (T14) | GII (T24) | |||||
---|---|---|---|---|---|---|---|
Beam Depth hg (mm) | 280 | 600 | 920 | 280 | 600 | 920 | |
fm,g | mean (MPa) | 32.0 | 26.5 | 24.5 | 44.9 | 37.1 | 34.3 |
COV (%) | 18.7 | 13.0 | 11.0 | 17.4 | 12.6 | 10.0 | |
x05,LN (MPa) | 23.0 | 21.2 | 20.2 | 33.3 | 29.9 | 28.9 | |
x05,LN/x05,LN,Ref1 (−) | 1.08 | 1.00 | 0.96 | 1.11 | 1.00 | 0.97 | |
kh = (h/600)0.10 [10] | 1.08 | 1.00 | 0.96 | 1.08 | 1.00 | 0.96 | |
kh2 [39] | 1.09 | 1.00 | 0.94 | 1.09 | 1.00 | 0.94 | |
Em,g | mean (MPa) | 10,459 | 10,438 | 10,469 | 12,953 | 12,950 | 12,981 |
COV (%) | 7.0 | 4.6 | 3.6 | 7.9 | 5.3 | 4.1 |
wb = wg | hg | Group | fm,g,mean (MPa) | COV(fm,g) (%) | fm,g,05,LN (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Full | 1 Cut | 2 Cuts | Full | 1 Cut | 2 Cuts | Full | 1 Cut | 2 Cuts | |||
100 | 280 | GI (T14) | 30.4 | 29.4 | – | 19.5 | 22.1 | – | 21.5 | 19.5 | – |
(0.97) 1 | – | (1.13) 1 | – | (0.91) 1 | – | ||||||
150 | 32.0 | 30.5 | 29.3 | 18.7 | 20.9 | 24.1 | 23.0 | 20.9 | 18.5 | ||
(0.95) 1 | (0.92) 1 | (1.12) 1 | (1.29) 1 | (0.91) 1 | (0.81) 1 | ||||||
200 | 33.3 | 31.5 | 30.1 | 18.5 | 19.8 | 22.4 | 24.1 | 22.1 | 20.2 | ||
(0.95) 1 | (0.91) 1 | (1.07) 1 | (1.21) 1 | (0.91) 1 | (0.84) 1 | ||||||
150 | 600 | 26.5 | 24.9 | 23.3 | 13.0 | 14.2 | 15.2 | 21.2 | 19.5 | 17.8 | |
(0.94) 1 | (0.88) 1 | (1.09) 1 | (1.17) 1 | (0.92) 1 | (0.84) 1 | ||||||
150 | 280 | GII (T24) | 44.9 | 43.8 | 41.8 | 17.4 | 18.3 | 21.3 | 33.3 | 32.0 | 28.9 |
(0.98) 1 | (0.93) 1 | (1.05) 1 | (1.22) 1 | (0.96) 1 | (0.87) 1 | ||||||
150 | 600 | 37.1 | 36.2 | 34.5 | 12.6 | 13.1 | 13.5 | 29.9 | 28.9 | 27.4 | |
(0.98) 1 | (0.93) 1 | (1.03) 1 | (1.07) 1 | (0.97) 1 | (0.92) 1 |
wb = wg | hg | Group | Em,g,mean (MPa) | COV(Em,g) (%) | Em,g,05,LN (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Full | 1 Cut | 2 Cuts | Full | 1 Cut | 2 Cuts | Full | 1 Cut | 2 Cuts | |||
100 | 280 | GI (T14) | 10,424 | 10,449 | – | 7.4 | 8.2 | – | 9214 | 9123 | – |
(1.00) 1 | – | (1.11) 1 | – | (0.99) 1 | – | ||||||
150 | 10,459 | 10,433 | 10,492 | 7.0 | 7.9 | 8.7 | 9302 | 9150 | 9071 | ||
(1.00) 1 | (1.00) 1 | (1.12) 1 | (1.24) 1 | (0.98) 1 | (0.98) 1 | ||||||
200 | 10,472 | 10,467 | 10,545 | 7.3 | 7.9 | 8.9 | 9264 | 9171 | 9092 | ||
(1.00) 1 | (1.01) 1 | (1.08) 1 | (1.22) 1 | (0.99) 1 | (0.98) 1 | ||||||
150 | 600 | 10,438 | 10,517 | 10,575 | 4.6 | 5.3 | 5.8 | 9661 | 9639 | 9606 | |
(1.01) 1 | (1.01) 1 | (1.13) 1 | (1.24) 1 | (1.00) 1 | (0.99) 1 | ||||||
150 | 280 | GII (T24) | 12,953 | 13,010 | 13,006 | 7.9 | 9.5 | 10.1 | 11,360 | 11,113 | 10,988 |
(1.00) 1 | (1.00) 1 | (1.20) 1 | (1.28) 1 | (0.98) 1 | (0.97) 1 | ||||||
150 | 600 | 12,950 | 13,062 | 13,059 | 5.3 | 6.1 | 6.5 | 11,850 | 11,800 | 11,711 | |
(1.01) 1 | (1.01) 1 | (1.14) 1 | (1.23) 1 | (1.00) 1 | (0.99) 1 |
Glulam Strength Class | Board Strength Class | EN 14080 [10] | New Model Equation (12) | ||
---|---|---|---|---|---|
1 Cut | 2 Cuts | 1 Cut | 2 Cuts | ||
GL24h | T14 | 16.0 1 | 12.0 1 | 21.0 | 19.0 |
GL28h | T18 | 24.0 | 20.0 | 25.3 | 23.3 |
GL32h | T24 | 30.7 | 26.7 | 29.7 | 27.7 |
Boards | FJ | Flex_B-i | Flex_B-ii | ||
---|---|---|---|---|---|
width wb/wg (mm) | 100 | 100 | 210 | 150 | |
thickness/depth tb/hg (mm) | 30 | 30 | 150 | 360 | |
number of tests | 53 | 70 | 7 | 7 | |
u | mean (%) | 8.5 | 11.3 | 8.3 | 7.4 |
COV (%) | 8.4 | 4.2 | 2.5 | 2.9 | |
ρ12 | mean (kg/m3) | 451 | 435 | 472 | 455 |
COV (%) | 10.5 | 8.1 | 3.5 | 2.3 | |
x05,LN (kg/m3) | 378 | 380 | 446 | 439 | |
Et,0,b Em,g | mean (MPa) | 13,129 | – | 13,617 | 13,761 |
COV (%) | 20.7 | – | 4.7 | 5.4 | |
ft,0,b fm,g | mean (MPa) | 31.4 | 43.2 | 45.0 | 40.6 |
COV (%) | 43.2 | 11.6 | 17.3 | 16.7 | |
x05,LN (MPa) | 14.9 | 35.4 | 33.9 | 30.7 | |
x05,LN,corr (MPa) | 16.0 1 | – | 27.92 | 28.5 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieder, R.; Brandner, R. Probabilistic Models for the Tensile Properties of Split Boards and Their Application for the Prediction of Bending Properties of Engineered Timber Products Made of Norway Spruce. Buildings 2022, 12, 1143. https://doi.org/10.3390/buildings12081143
Sieder R, Brandner R. Probabilistic Models for the Tensile Properties of Split Boards and Their Application for the Prediction of Bending Properties of Engineered Timber Products Made of Norway Spruce. Buildings. 2022; 12(8):1143. https://doi.org/10.3390/buildings12081143
Chicago/Turabian StyleSieder, Raimund, and Reinhard Brandner. 2022. "Probabilistic Models for the Tensile Properties of Split Boards and Their Application for the Prediction of Bending Properties of Engineered Timber Products Made of Norway Spruce" Buildings 12, no. 8: 1143. https://doi.org/10.3390/buildings12081143
APA StyleSieder, R., & Brandner, R. (2022). Probabilistic Models for the Tensile Properties of Split Boards and Their Application for the Prediction of Bending Properties of Engineered Timber Products Made of Norway Spruce. Buildings, 12(8), 1143. https://doi.org/10.3390/buildings12081143