Detailed Structural Characterization of Existing RC Buildings for Seismic Exposure Modelling of the Lisbon Area
Abstract
:1. Introduction
2. Lisbon RC Building Stock
2.1. Characteristics of RC Buildings
 (i)
 transition buildings or mixed masonryRC buildings, built until the beginning of 1950.
 (ii)
 first phase RC buildings, built before the introduction of seismic resistance codes, until around 1958.
 (iii)
 second phase RC buildings, built between around 1958 and 1983.
 (iv)
 modern RC buildings, built after 1983.
2.2. Census Data
2.3. Benfica and Alvalade Parishes as Representative of the Lisbon Building Stock
3. Exposure Model for the Lisbon Residential RC Building Stock
3.1. Buildings Taxonomies
3.2. RC Exposure Model
4. Structural Characterization
4.1. Construction Material
4.2. Storey Heights
4.3. Slab Thickness
4.4. Elements′ CrossSection
4.5. Reinforcement Details
4.5.1. Columns
4.5.2. RC Walls
4.5.3. Beams
4.5.4. Discussion of Results—Reinforcement for Vertical Structural Elements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
 Borges, J.F.; Fitas, A.J.S.; Bezzeghoud, M.; TevesCosta, P. Seismotectonics of Portugal and its adjacent Atlantic area. Tectonophysics 2001, 331, 373–387. [Google Scholar] [CrossRef]
 Lamego, P.; Lourenço, P.B.; Sousa, M.L.; Marques, R. Seismic vulnerability and risk analysis of the old building stock at urban scale: Application to a neighbourhood in Lisbon. Bull. Earthq. Eng. 2017, 15, 2901–2937. [Google Scholar] [CrossRef]
 Gago, A.; Proença, J. Parque Escolar: Reforço Sísmica de Edificios Escolares; Diário da República: Lisbon, Portugal, 2011; ISBN 9789899610668. [Google Scholar]
 RSCCS. Regulamento de Segurança das Construções Contra os Sismos, DecretoLei n.o 41658 de 31 de Maio de 1958; Diário da República: Lisbon, Portugal, 1958. [Google Scholar]
 RSEP. Regulamento de Solicitações em Edifícios e Pontes (RSEP). Decreto n.o 44041 de 18 de Novembro; Diário da República: Lisbon, Portugal, 1961. [Google Scholar]
 REBA67/76. Regulamento de Estruturas de Betão Armado; Diário da República: Lisbon, Portugal, 1967. [Google Scholar]
 RSA. Regulamento de Segurança e Acções para Estruturas de Edifícios e Pontes. DecretoLei n.o 235/83; Diário da República: Lisbon, Portugal, 1983. [Google Scholar]
 CEN. NP EN 199211: Eurocódigo 2—Projecto de Estruturas de Betão; Parte 11: Regras Gerais e Regras Para Edifícios; CEN: Brussels, Belgium, 2004. [Google Scholar]
 CEN. NP EN 19981: Eurocódigo 8—Projecto de Estruturas Para Resistência Aos Sismos. Parte 1: Regras Gerais, Acções Sísmicas e Regras Para Edifícios; CEN: Brussels, Belgium, 2010. [Google Scholar]
 Costa, R.; Providência, C. Avaliação e Reabilitação Sísmicas de Edifícios de Betão Armado; ENGEBOOK: Porto, Portugal, 2019; ISBN 9789898927774. [Google Scholar]
 Saraiva, J.P.; Appleton, J. Avaliação da Capacidade Sísmica de Edifícios de Betão Armado de Acordo com o Eurocódigo 8—Parte 3. 4as Jorn. Port. Eng. Estruturas 2006, 1980, 1–15. [Google Scholar]
 Caruso, C.; Bento, R.; Castro, J.M. A contribution to the seismic performance and loss assessment of old RC wallframe buildings. Eng. Struct. 2019, 197, 109369. [Google Scholar] [CrossRef]
 Couto, R.; RequenaGarcíaCruz, M.V.; Bento, R.; MoralesEsteban, A. Seismic capacity and vulnerability assessment considering ageing effects. Case study: Three local Portuguese RC buildings. Bull. Earthq. Eng. 2020, 19, 6591–6614. [Google Scholar] [CrossRef]
 Appleton, J. Tipificação do Parque Construído. In Sismos e Edifícios; Orion: London, UK, 2008. [Google Scholar]
 Oliveira, C.S.; Gaspar, J.; Correia, F. Levantamento do Parque Habitacional de Lisboa. Vol. 1—Fichainquérito. Apuramento de Resultados na Zona da Alameda D. Afonso Henriques, Freguesias de Alto do Pina, S. João de Deus e S. Jorge de Arroios. Report; LNEC: Lisboa, Portugal, 1985. [Google Scholar]
 Couto, R.; Sousa, I.; Bento, R.; Castro, J.M. Chapter 2. Seismic vulnerability assessment of RC structures: Research and practice at building level. In Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales. From Single Buildings to LargeScale Assessment; Ferreira, T.M., Rodrigues, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128240724. [Google Scholar]
 Grigoratos, I.; Monteiro, R.; Ceresa, P.; Di Meo, A.; Faravelli, M.; Borzi, B. Crowdsourcing Exposure Data for Seismic Vulnerability Assessment in Developing Countries. J. Earthq. Eng. 2021, 25, 835–852. [Google Scholar] [CrossRef]
 Pittore, M.; Wieland, M.; Fleming, K. Perspectives on global dynamic exposure modelling for georisk assessment. Nat. Hazards 2017, 86, 7–30. [Google Scholar] [CrossRef]
 Pavić, G.; HadzimaNyarko, M.; Bulajić, B.; Jurković, Ž. Development of seismic vulnerability and exposure modelsA case study of Croatia. Sustainability 2020, 12, 973. [Google Scholar] [CrossRef] [Green Version]
 Grünthal, G. European Macroseismic Scale 1998; European Seismological Commission: Luxembourg, 1998; Volume 15. [Google Scholar]
 Rojahn, C.; Sharpe, R.L.; Scholl, R.E.; Kiremidjian, A.S.; Nutt, R.V. ATC13 Earthquake Damage Evaluation Datas for California; Redwood City, CA, USA, 1985. Available online: https://www.atcouncil.org/pdfs/atc13.pdf (accessed on 15 December 2021).
 Rojahn, C.; Scawthorn, C.; Anagnos, T.; Wong, K.; Poland, C.D. Rapid Visual Screening of Buildings for Potential Seismic Hazards, Handbook, FEMA 154; CreateSpace Independent Publishing Platform: Redwood City, CA, USA, 2002. [Google Scholar]
 FEMA. FEMA 178—NEHRP Handbook for the Seismic Evaluation of Existing Buildings; FEMA: Washington, DC, USA, 1992.
 Kircher, C.A.; Whitman, R.V.; Holmes, W.T. HAZUS Earthquake Loss Estimation Methods. Nat. Hazards 2006, 7, 45–59. [Google Scholar] [CrossRef]
 Jaiswal, K.; Wald, D.; Porter, K. A global building inventory for earthquake loss estimation and risk management. Earthq. Spectra 2010, 26, 731–748. [Google Scholar] [CrossRef]
 Pitilakis, K.; Franchin, P.; Khazai, B.; Wenzel, H. SYNERG: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities: Methodology and Applications. In Geotechnical, Geological and Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014; Volume 31, ISBN 9789401788342. [Google Scholar]
 World Housing Encyclopedia (WHE). Available online: https://www.worldhousing.net (accessed on 15 December 2021).
 Brzev, S.; Scawthorn, C.; Charleson, A.W.; Allen, L.; Greene, M.; Jaiswal, K.; Silva, V. GEM Building Taxonomy Version 2.0. GEM Tech. Rep. 2013, 2, 188. [Google Scholar] [CrossRef]
 Riga, E.; Fotopoulou, S.; Karatzetzou, A.; Apostolaki, S.; Ntafloukas, K.; Pitilakis, K. Towards the development of a seismic risk model for greece. In Proceedings of the International Conference on Natural Hazards and Infrastructure, Chania, Greece, 23–16 June 2019. [Google Scholar]
 Ferreira, T.M.; Rodrigues, H.; Vicente, R. Seismic vulnerability assessment of existing reinforced concrete buildings in urban centers. Sustainability 2020, 12, 1996. [Google Scholar] [CrossRef] [Green Version]
 Salazar, L.G.F.; Ferreira, T.M. Seismic vulnerability assessment of historic constructions in the downtown of Mexico City. Sustainability 2020, 12, 1276. [Google Scholar] [CrossRef] [Green Version]
 Wieland, M.; Pittore, M.; Parolai, S.; Begaliev, U.; Yasunov, P.; Tyagunov, S.; Moldobekov, B.; Saidiy, S.; Ilyasov, I.; Abakanov, T. A multiscale exposure model for seismic risk assessment in Central Asia. Seismol. Res. Lett. 2015, 86, 210–222. [Google Scholar] [CrossRef] [Green Version]
 Dolce, M.; Prota, A.; Borzi, B.; da Porto, F.; Lagomarsino, S.; Magenes, G.; Moroni, C.; Penna, A.; Polese, M.; Speranza, E.; et al. Seismic Risk Assessment of Residential Buildings in Italy; Springer: Amsterdam, The Netherlands, 2021; Volume 19, ISBN 0123456789. [Google Scholar]
 Kechidi, S.; Abarca, A.; Marques, M.; Castro, J.M.; Monteiro, R. On the seismic risk assessment of the residential buildings in Northern Algeria. In Proceedings of the 12th Canadian Conference on Earthquake Engineering, Quebec City, QC, Canada, 17–20 June 2019; pp. 1–8. [Google Scholar]
 Silva, V.; Crowley, H.; Varum, H.; Pinho, R.; Sousa, L. Investigation of the characteristics of Portuguese regular momentframe RC buildings and development of a vulnerability model. Bull. Earthq. Eng. 2015, 13, 1455–1490. [Google Scholar] [CrossRef]
 Vicente, R.; Ferreira, T.M.; Maio, R. Seismic risk mitigation of old urban centres: Characterizationand seismic vulnerability assessment of the Ribeirinha neighborhood of Faro, Portugal. Territorium 2015, 22, 283–290. [Google Scholar] [CrossRef] [Green Version]
 Furtado, A.; Costa, C.; Arêde, A.; Rodrigues, H. Geometric characterisation of Portuguese RC buildings with masonry infill walls. Eur. J. Environ. Civ. Eng. 2015, 20, 396–411. [Google Scholar] [CrossRef]
 Bal, I.E.; Crowley, H.; Pinho, R.; Gülay, F.G. Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models. Soil Dyn. Earthq. Eng. 2008, 28, 914–932. [Google Scholar] [CrossRef]
 Meral, E. Evaluation of Structural Properties of Existing Turkish RC Building Stock. Iran. J. Sci. Technol.—Trans. Civ. Eng. 2019, 43, 445–462. [Google Scholar] [CrossRef]
 Ozmen, H.B.; Inel, M.; Senel, S.M.; Kayhan, A.H. Load carrying system characteristics of existing turkish rc building stock. Int. J. Civ. Eng. 2015, 13, 76–91. [Google Scholar] [CrossRef]
 Rodrigues, H.; Sousa, R.; Vitorino, H.; Batalha, N.; Varum, H.; Fernandes, P. Characterisation of Portuguese RC Precast Industrial Building Stock. Adv. Civ. Eng. 2020, 2020, 7517205. [Google Scholar] [CrossRef]
 Arquivo Municipal de Lisboa Obra n 33461—Folha 23. In Process. 25114DAGPG1959; Lisbon Municipial Archive: Lisboa, Portugal, 1959.
 Appleton, J. The Seismic MegaEarthquakes in the XXI Century or the Seismic Vulnerability of Lisbon Constructions. In Reducing the Seismic Vulnerability of the Building Stock; SPES, GECo: Lisbon, Portugal, 2001. [Google Scholar]
 Celarec, D.; Ricci, P.; Dolšek, M. The sensitivity of seismic response parameters to the uncertain modelling variables of masonryinfilled reinforced concrete frames. Eng. Struct. 2012, 35, 165–177. [Google Scholar] [CrossRef]
 Mucedero, G.; Perrone, D.; Monteiro, R. Nonlinear static characterisation of masonryinfilled RC building portfolios accounting for variability of infill properties. Bull. Earthq. Eng. 2021, 19, 2597–2641. [Google Scholar]
 Verderame, G.M.; de Luca, F.; Ricci, P.; Manfredi, G. Preliminary analysis of a softstorey mechanism after the 2009 L’Aquila earthquake. Earthq. Eng. Struct. Dyn. 2011, 40, 925–944. [Google Scholar] [CrossRef] [Green Version]
 RuizPinilla, J.G.; Adam, J.M.; PérezCárcel, R.; Yuste, J.; Moragues, J.J. Learning from RC building structures damaged by the earthquake in Lorca, Spain, in 2011. Eng. Fail. Anal. 2016, 68, 76–86. [Google Scholar] [CrossRef]
 REBAP. Regulamento de Estruturas de Betão Armado e PréEsforçado. DecretoLei n.o 349C/83 de 30 de Julho; Diário da República: Lisbon, Portugal, 1983. [Google Scholar]
 Instituto Nacional de Estatística. Censos 2011 Resultados Definitivos; Instituto Nacional de Estatística: Lisboa, Portugal, 2012; Volume 26.
 JFA História da Freguesia. Available online: https://www.jfalvalade.pt/alvalade/historia/ (accessed on 20 December 2021).
 Santos, J. Espaços de Mediação Infraestrutural: Interpretação e Projeto Na produção do Urbano no Território Metropolitano de Lisboa”, Prémio Metrópoles Ciência 2016; Faculdade de Arquitectura de Lisboa: Lisboa, Portugal, 2016. [Google Scholar]
 JFB História da Freguesia. Available online: https://www.jfbenfica.pt/freguesia/juntadefreguesia/ (accessed on 20 December 2021).
 AML Área Metropolitana de Lisboa—Atas do Seminário “Área Metropolitana de LisboaAmbiente Urbano e Riscos”; AML: Lisbon, Portugal, 2013.
 Kohrangi, M.; Bazzurro, P.; Vamvatsikos, D. Seismic risk and loss estimation for the building stock in Isfahan. Part I: Exposure and vulnerability. Bull. Earthq. Eng. 2021, 19, 1709–1737. [Google Scholar] [CrossRef]
 Pittore, M.; Haas, M.; Megalooikonomou, K.G. Riskoriented, bottomup modeling of building portfolios with faceted taxonomies. Front. Built Environ. 2018, 4, 41. [Google Scholar] [CrossRef]
 Tzitzikas, Y. Faceted TaxonomyBased Sources; Springer: Heidelberg, Germany, 2009. [Google Scholar]
 Roeslin, S.; Ma, Q.T.M.; García, H.J. Damage assessment on buildings following the 19th september 2017 puebla, Mexico earthquake. Front. Built Environ. 2018, 4, 72. [Google Scholar] [CrossRef]
 Allen, L.; Brzev, S.; Charleson, A.W.; Scawthorn, C.; Silva, V. GEM Building Taxonomy—An open global building classification system. In Proceedings of the New Zealand Society for Earthquake Engineering Technical Conference & AGM, Rotorua, New Zealand, 10–12 April 2015. [Google Scholar]
 Crowley, H.; Despotaki, V.; Silva, V.; Pitilakis, D.; Pitilakis, K.; Rodrigues, D.; Pitilakis, K.; Pitilakis, D.; Hancilar, U.; Bursi, O.; et al. D26.1 Taxonomy of European Residential, Commercial, Industrial Buildings and Industrial Plants. 2017. Available online: DOCUMENTS/DELIVERABLES/SERA_D26.1_Taxonomy_Buildings_Industry (accessed on 20 December 2021).
 Martins, L.; Silva, V. Development of a fragility and vulnerability model for global seismic risk analyses. Bull. Earthq. Eng. 2021, 19, 6719–6745. [Google Scholar] [CrossRef]
 Grigoratos, I.; Monteiro, R.; Ceresa, P.; Di Meo, A.; Faravelli, M.; Borzi, B. Seismic Vulnerability Assessment of the Urban Building Environment in Nablus—Palestine. Int. J. Archit. Herit. 2018, 12, 1196–1215. [Google Scholar]
 Kechidi, S.; Castro, J.M.; Monteiro, R.; Marques, M.; Yelles, K.; Bourahla, N.; Hamdache, M. Development of Exposure Datasets for Earthquake Damage and Risk Modelling: The Case Study of Northern Algeria; Springer: Amsterdam, The Netherlands, 2021; Volume 19. [Google Scholar]
 De Sousa, R.R.; Costa, A.C.; Costa, A.G. Metodologia Para a Avaliação da Segurança Sísmica de Edifícios Existentes Baseada em Análises de Fiabilidade Estrutural; LNEC: Lisbon, Portugal, 2019. [Google Scholar]
 CEN. NP EN 19983: Eurocódigo 8—Projecto de Estruturas Para Resistência ao Sismo. Parte 3: Avaliação e Reabilitação de Edifícios; CEN: Brussels, Belgium, 2017. [Google Scholar]
 Peres, R.; Couto, R.; Sousa, I.; Castro, J.; Bento, R. Modelling and evaluation of brittle shear effects on the seismic performance and loss assessment of RC buildings. Eng. Struct. 2011, 9, 1137–1155. [Google Scholar]
 Priestley, M.J.N.; Seible, F.; Verma, R.; Xiao, Y. Seismic Shear Strength of Reinforced Concrete Columns; University of California: San Diego, CA, USA, 1993. [Google Scholar]
 Pujol, S. Drift Capacity of Reinforced Concrete Columns Subjected to Displacement Reversals; Purdue University: West Lafayette, IN, USA, 2002. [Google Scholar]
 Sezen, H. Seismic Behaviour and Modeling of Reinforced Concrete Building Columns; University of California: Berkeley, CA, USA, 2002. [Google Scholar]
 Elwood, K.; Moehle, J.P. Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames; University of California: Berkeley, CA, USA, 2003. [Google Scholar]
 Elwood, K.J.; Moehle, J.P. Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthq. Spectra 2005, 21, 71–89. [Google Scholar] [CrossRef]
 Sezen, H.; Moehle, J. Strength and Deformation Capacity of Reinforced Concrete Columns with Limited Ductility. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
 Aslani, H.; Miranda, E. Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings; Stanford University: Stanford, CA, USA, 2005. [Google Scholar]
 Zhu, L.; Elwood, K.J.; Haukaas, T. Classification and Seismic Safety Evaluation of Existing Reinforced Concrete Columns. J. Struct. Eng. 2007, 133, 1316–1330. [Google Scholar] [CrossRef]
 Leborgne, M.R. Modeling the Post Shear Failure Behavior of Reinforced Concrete Columns; University of Texas: Austin, TX, USA, 2012. [Google Scholar]
 LeBorgne, M.R.; Ghannoum, W.M. Calibrated analytical element for lateralstrength degradation of reinforced concrete columns. Eng. Struct. 2014, 81, 35–48. [Google Scholar] [CrossRef]
 Wibowo, A.; Wilson, J.L.; Lam, N.T.K.; Gad, E.F. Drift performance of lightly reinforced concrete columns. Eng. Struct. 2014, 59, 522–535. [Google Scholar] [CrossRef]
 Wilson, J.L.; Lam, N.T.K.; Gad, E.F. Hazard Identification and Behaviour of Reinforced Concrete Framed Buildings in Regions of Lower Seismicity. In Proceedings of the 10th Pacific Conference on Earthquake Engineering, Sydney, Australia, 6–8 November 2015; pp. 6–8. [Google Scholar]
Typology  Period of Construction  Codes  Remarks 

1st phase RC building  End of 40′s–Beginning of 60′s  RPEBA (1918) RBA (1935) 

2nd phase RC building  Beginning of 60′s–End of 70′s  RSCCS (1958) RSEP (1961) REBA (1967) 

Modern RC buildings  Beginning of 80′s  RSA (1983) REBAP (1983) RBLH (1971) CEN (1990) 

Attribute  Level 1  Level 2  

1. Material of lateral loadresisting system  Concrete, reinforced CR  CR  Castinplace concrete  CIP  
2. Lateral load resisting system  Dual framewall system  LDUAL  Nonductile  DNO  
Ductile, low  DUCL  
Moment Frame  LFM  Ductile, medium  DUCM  
Ductile, high  DUCH  
3. Date of construction or retrofit  Upper and lower bound for the date of construction or retrofit  YBET  
4. Height  Number of storeys above ground  H  Range of number of storeys above ground  HBET  
Height of ground floor level above ground  HF  Range of height of ground floor level above ground  HFBET  
5. Regular or irregular  Regular structure  IRRE  
Irregular structure  IRIR 
Category  Attribute 

General information  Project number, building year, type of occupation (residential, commercial, service, or mixed). 
Global structural characteristics  Floors number, ground and regular floors height, materials, structure type, RC classes, type of configuration (LFM or LDUAL), slab type and thickness. 
Specific structural characteristics of RC elements (columns, walls, and beams)  Detailed structural crosssections, longitudinal and transverse rebar, and RC elements data. 
Irregularities  Softs and/or plan or height irregularities (and the respective floor). 
Attribute  Benfica  Alvalade 

Façade  Masonry infills walls (as single or double plans)  Masonry infills walls (as single or double plans) 
Façade coating  Marble, Limestone and Evinel (as wall tile)  No data available 
Roof  Marseille and Lusa (as roof tile)  Marseille and Lusa (as roof tile) 
Interior Walls  Masonry infills walls  Masonry infills walls 
Pavement floor  Hydraulic, ceramic, and stone (as floor tile) and wood parquet  Ceramic and stone (as floor tile) 
Softstorey  Present, mainly, in buildings built prior to the 1970s with a decrease for the subsequent years. In total, 46% of the RC buildings are characterized by a softstorey  Present, mainly, in buildings built prior to the 1970s. In total, 34% of the RC buildings are characterized by a softstorey 
Structure type  Reinforced concrete  Reinforced concrete 
Concrete  B225  B180, B225, C20/25 and C40 
Steel rebars  A40 (usually as smooth bars until 1970s and ribbed afterwards)  A40 (usually as smooth bars and ribbed afterwards) and S235 
Foundation  Pad footing (casually with strap beam)  Pad footing 
Areas  Sample Size  Storey  Probabilistic Distribution  Mean (m)  COV (%)  Min. (m)  Max. (m)  Χ^{2} Test 

Alvalade  303  Ground  Lognormal  3.89  19  2.80  6.00  NS * 
Regular  Lognormal  3.03  4  2.70  4.00  NS *  
Benfica  400  Ground  Lognormal  3.54  21  2.50  5.40  NS * 
Regular  Lognormal  2.86  10  2.10  4.00  NS *  
Total  703  Ground  Lognormal  3.69  21  2.50  6.00  NS * 
Regular  Lognormal  2.93  8  2.10  4.00  NS * 
Areas  Sample Size  Probabilistic Distribution  Mean (m)  COV (%)  Min. (m)  Max. (m)  Χ^{2} Test 

Alvalade  246  Lognormal  0.12  27  0.08  0.40  NS * 
Benfica  408  Lognormal  0.15  20  0.10  0.20  NS * 
Total  654  Lognormal  0.14  24  0.08  0.40  NS * 
LLRS  Number of Storeys  Sample Size  Mode (m)  Probabilistic Distribution  Mean (m)  COV (%)  Min. (m)  Max. (m)  Χ^{2} Test 

LFM  <4  199  0.30  Lognormal  0.46  39  0.20  1.10  NS * 
5–7  293  0.60  Gamma  0.57  32  0.25  1.20  NS *  
8–9  146  0.40  Weibull  0.57  36  0.20  1.00  NS *  
>10  13  0.55  Lognormal  0.72  25  0.55  1.00  NS *  
LDUAL  <4  43  0.60  Beta  0.53  35  0.20  0.80  NS * 
5–7  178  0.80  Gamma  0.58  40  0.20  1.25  NS *  
8–9  108  0.35  Lognormal  0.69  52  0.35  2.60  NS *  
>10  46  0.90  Gamma  0.71  34  0.40  1.20  NS * 
LLRS  Number of Storeys  Sample Size  Mode (m)  Probabilistic Distribution  Mean (m)  COV (%)  Min. (m)  Max. (m)  Χ^{2} Test 

LFM  <4  199  0.30  Lognormal  0.31  33  0.15  0.75  NS * 
5–7  293  0.20  Lognormal  0.27  32  0.20  0.60  NS *  
8–9  146  0.20  Lognormal  0.30  35  0.15  0.80  NS *  
>10  13  0.30  NA *  0.30  45  0.17  0.70  NA *  
LDUAL  <4  43  0.20  Lognormal  0.27  42  0.20  0.80  1% 
5–7  178  0.25  Lognormal  0.29  27  0.20  0.55  NS *  
8–9  108  0.20  Lognormal  0.29  31  0.18  0.60  NS *  
>10  46  0.40  Lognormal  0.40  32  0.20  0.70  NS * 
Parish  RC Elements  Dimension  Sample Size  Probabilistic Distribution  Mean (m)  COV (%)  Min. (m)  Max. (m)  Χ^{2} Test 

Alvalade  Walls  No available data  
Beams  Depth  98  Lognormal  0.53  21  0.30  0.90  NS *  
Width  98  Lognormal  0.27  30  0.15  0.50  10%  
Benfica  Walls  Depth  163  Lognormal  2.00  31  1.60  4.00  NS * 
Width  163  Lognormal  0.24  15  0.18  0.40  NS *  
Beams  Depth  432  Lognormal  0.48  25  0.25  1.00  NS *  
Width  432  Lognormal  0.24  28  0.10  0.50  10% 
LLRS  Period of Const.  Sample Size  Mode (%)  Probabilistic Distribution  Mean (%)  COV (%)  Min (%)  Max (%)  Χ^{2} Test 

LFM  <1970  335  0.77  Lognormal  0.98  80  0.13  5.63  NS * 
1970–1983  60  1.13  Lognormal  1.32  94  0.18  3.85  NS *  
>1983  6  0.13  NA *  0.93  79  0.13  2.15  NA *  
LDUAL  <1970  197  0.23  Lognormal  0.98  99  0.21  6.62  NS * 
1970–1983  56  0.57  Lognormal  1.21  81  0.43  4.46  1%  
>1983  20  0.52  NA *  0.96  51  0.52  2.06  NA * 
LLRS  Period of Const.  Sample Size  Mode (%)  Probabilistic Distribution  Mean (%)  COV (%)  Min (%)  Max (%)  Χ^{2} Test 

LFM  <1970  327  0.14  Lognormal  0.12  66  0.02  0.69  NS * 
1970–1983  59  0.19  Lognormal  0.21  68  0.03  0.57  NS *  
>1983  6  0.03  NA *  0.11  84  0.03  0.28  NA *  
LDUAL  <1970  201  0.07  Lognormal  0.11  52  0.02  0.46  NS * 
1970–1983  45  0.05  Lognormal  0.14  48  0.05  0.33  NS *  
>1983  18  0.28  NA *  0.21  39  0.07  0.28  NS * 
Reinforcement Ratio  Period of Const.  Sample Size  Mode  Probabilistic Distribution  Mean (%)  COV (%)  Min (%)  Max (%)  Χ^{2} Test 

Longitudinal  <1970  97  0.08  Lognormal  0.33  96  0.02  1.75  NS * 
1970–1983  43  0.20  Weibull  0.63  61  0.06  1.48  NS *  
>1983  11  1.17  NA *  0.78  53  0.61  1.17  NA *  
Transverse  <1970  97  0.12  Gamma  0.14  96  0.01  0.90  NS * 
1970–1983  43  0.23  NA *  0.19  23  0.11  0.27  NA *  
>1983  11  0.23  NA *  0.29  71  0.23  0.90  NA * 
Type  Sample Size  Mode ρ_{tot} (%)  Probabilistic Distribution  Mean ρ_{tot} (%)  Coefficient of Variation (%)  Min.ρ_{tot} (%)  Max.ρ_{tot} (%)  ChiSquare Test (%)  

Alvalade  Edge  66  0.30  Lognormal  0.64  69  0.06  2.37  1 
Interior  60  0.43  Lognormal  0.78  56  0.12  2.11  1  
Benfica  Edge  413  0.13  Gamma  0.62  92  0.04  3.91  NS * 
Interior  415  0.10  Gamma  0.52  71  0.06  2.73  NS * 
Type  Sample Size  Mode ρ_{w} (%)  Probabilistic Distribution  Mean ρ_{w} (%)  Coefficient of Variation (%)  Min. ρ_{w} (%)  Max. ρ_{w} (%)  ChiSquare Test (%)  

Alvalade  Edge  66  0.10  Lognormal  0.19  98  0.01  3.28  NS * 
Interior  60  0.21  Lognormal  0.25  97  0.04  5.81  NS *  
Benfica  Edge  413  0.14  Lognormal  0.20  78  0.02  1.58  NS * 
Interior  415  0.14  Lognormal  0.20  97  0.03  1.68  NS * 
Model  Sample Size  Longitudinal Reinforcement Ratio ρ_{tot} (%)  Transverse Reinforcement Ratio ρ_{w} (%)  

Range  Mean  Range  Mean  
Priestley et al. (1993) [66]  86 columns  N.A.  0.16< ρ_{w} <1.31  N.A.  
Pujol et al. (1999) [67]  92 columns  0.5 < ρ_{tot} < 5.1  N.A.  0.0< ρ_{w} <1.64  N.A. 
Sezen (2002); Elwood and Moehle (2003, 2005); Sezen and Moehle (2004) [68,69,70,71]  50 columns  1 < ρ_{tot} < 4  2.3  0.10 < ρ_{w} <0.65  0.3 
Aslani and Miranda (2005) [72]  92 columns  0.9 < ρ_{tot} < 4  2.4  0.05< ρ_{w} <0.7  0.25 
Zhu et al. (2007) [73]  125 columns  1.2 < ρ_{tot} < 3.3  2.27  0.06< ρ_{w} <2.2  0.55 
Leborgne (2012); LeBorgne and Ghannoum (2014) [74,75]  32 columns  1.3 < ρ_{tot} < 3.8  2.44  0.07< ρ_{w} <1.41  0.36 
Wibowo et al. (2014); Wilson et al. (2015) [76,77]  31 columns  0.56 < ρ_{tot} < 4  2.01  0.07< ρ_{w} <0.38  0.23 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, V.; Couto, R.; Monteiro, R.; Castro, J.M.; Bento, R. Detailed Structural Characterization of Existing RC Buildings for Seismic Exposure Modelling of the Lisbon Area. Buildings 2022, 12, 642. https://doi.org/10.3390/buildings12050642
Xavier V, Couto R, Monteiro R, Castro JM, Bento R. Detailed Structural Characterization of Existing RC Buildings for Seismic Exposure Modelling of the Lisbon Area. Buildings. 2022; 12(5):642. https://doi.org/10.3390/buildings12050642
Chicago/Turabian StyleXavier, Válter, Rita Couto, Ricardo Monteiro, José Miguel Castro, and Rita Bento. 2022. "Detailed Structural Characterization of Existing RC Buildings for Seismic Exposure Modelling of the Lisbon Area" Buildings 12, no. 5: 642. https://doi.org/10.3390/buildings12050642