Local Buckling Development of H-Section Steel Core of Buckling-Restrained Brace
Abstract
1. Introduction
2. Theoretical Analyses on the Elastic Buckling Development of Flange
2.1. Analytical Model
2.2. Elastic Buckling Development of Flange
3. Establishment of Numerical Model
4. Elastic Buckling Development of H-Section Steel Core
5. Elasto-Plastic Buckling Development of H-Section Steel Core
5.1. Numerical Model and Loading Protocol
5.2. Simulation Results
5.3. Validation of Half-Wavelength of Local Buckling for Flange
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uang, C.M.; Nakashima, M.; Tsai, K.C. Research and Application of Buckling-restrained Braced Frames. Int. J. Steel Struct. 2004, 4, 301–313. [Google Scholar]
- Xie, Q. State of the art of buckling-restrained braces in Asia. J. Constr. Steel Res. 2005, 61, 727–748. [Google Scholar] [CrossRef]
- Takeuchi, T.; Wada, A. Review of Buckling-Restrained Brace Design and Application to Tall Buildings. Int. J. High-Rise Build. 2018, 7, 187–195. [Google Scholar]
- Chou, C.-C.; Chen, S.-Y. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Eng. Struct. 2010, 32, 2108–2121. [Google Scholar] [CrossRef]
- Takeuchi, T.; Hajjar, J.; Matsui, R.; Nishimoto, K.; Aiken, I. Local buckling restraint condition for core plates in buckling restrained braces. J. Constr. Steel Res. 2010, 66, 139–149. [Google Scholar] [CrossRef]
- Takeuchi, T.; Hajjar, J.F.; Matsui, R.; Nishimoto, K.; Aiken, I.D. Effect of local buckling core plate restraint in buckling restrained braces. Eng. Struct. 2012, 44, 304–311. [Google Scholar] [CrossRef]
- Wu, A.-C.; Lin, P.-C.; Tsai, K.-C. High-mode buckling responses of buckling-restrained brace core plates. Earthq. Eng. Struct. Dyn. 2013, 43, 375–393. [Google Scholar] [CrossRef]
- Lin, P.-C.; Tsai, K.-C.; Wang, K.-J.; Yu, Y.-J.; Wei, C.-Y.; Wu, A.-C.; Tsai, C.-Y.; Lin, C.-H.; Chen, J.-C.; Schellenberg, A.H.; et al. Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile. Earthq. Eng. Struct. Dyn. 2011, 41, 1001–1020. [Google Scholar] [CrossRef]
- Wu, B.; Mei, Y. Buckling mechanism of steel core of buckling-restrained braces. J. Constr. Steel Res. 2015, 107, 61–69. [Google Scholar] [CrossRef]
- Wu, B.; Lu, J.; Mei, Y.; Zhang, J. Buckling mechanism and global stability design method of buckling-restrained braces. J. Constr. Steel Res. 2017, 138, 473–487. [Google Scholar] [CrossRef]
- Lu, J.; Wu, B.; Mei, Y. Buckling mechanism of steel core and global stability design method for fixed-end buckling-restrained braces. Eng. Struct. 2018, 174, 447–461. [Google Scholar] [CrossRef]
- Wu, J.; Liang, R.J.; Wang, C.L.; Ge, H.B. Restrained Buckling Behavior of Core Component in Buckling-restrained Braces. Int. J. Adv. Steel Constr. 2012, 8, 212–225. [Google Scholar]
- Genna, F.; Gelfi, P. Analysis of the Lateral Thrust in Bolted Steel Buckling-Restrained Braces. II: Engineering Analytical Estimates. J. Struct. Eng. 2012, 138, 1244–1254. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.L.; Meng, S.; Zeng, B. Effect of the Unbonding Materials on the Mechanic Behavior of All-steel Buckling-restrained Braces. Eng. Struct. 2016, 111, 478–493. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Guo, Y.L.; Zhang, B.H.; Zhang, X.Q. Influence of Design Parameters of Buckling-restrained Brace on its Performance. J. Constr. Steel Res. 2015, 105, 139–150. [Google Scholar] [CrossRef]
- Oda, H.; Usami, T. Fabricating Buckling-restrained Braces from Existing H-section Bracing Members: Experimental Study. J. Struct.Eng. JSCE 2010, 56, 499–510. (In Japanese) [Google Scholar]
- Funayama, J.; Imase, F.; Usami, T.; Wang, C.L. Seismic Upgrade Effect of Steel Truss Structures with H-section BRBs. Proc. JSCE Earthq. Eng. Symp. 2012, 68, 730–747. (In Japanese) [Google Scholar]
- Usami, T.; Kaneko, H. Strength of H-shaped Brace Constrained Flexural Buckling Having Unconstrained Area at Both Ends (Both Ends Simply Supported). J. Struct. Constr. Eng. Archit. Inst. Jpn. 2001, 542, 171–177. (In Japanese) [Google Scholar] [CrossRef]
- Usami, T.; Kaneko, H.; Ono, T. Strength of H-shaped Brace Constrained Flexural Buckling Having Unconstrained Area at Both Ends (Both Ends Fixed). J. Struct. Constr. Eng. Archit. Inst. Jpn. 2002, 558, 211–218. (In Japanese) [Google Scholar] [CrossRef][Green Version]
- Ju, Y.K.; Kim, M.H.; Kim, J.; Kim, S.D. Component Tests of Buckling-restrained Braces with Unconstrained Length. Eng. Struct. 2009, 31, 507–516. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, C.H.; Ju, Y.K.; Kim, S.D. Subassemblage Test of Buckling-restrained Braces with H-shaped Steel Core. Struct. Des. Tall Spec. Build. 2015, 24, 243–256. [Google Scholar] [CrossRef]
- Li, W.; Wu, B.; Ding, Y. Experimental Study on Seismic Behaviors of H-section Steel Buckling-restrained Braes. J. Build. Struct. 2013, 34, 94–102. [Google Scholar]
- Li, W.; Wu, B.; Ding, Y.; Zhao, J.X. Experimental Performance of Buckling-restrained Braces with Steel Cores of H-section and Half-wavelength Evaluation of Higher-order Local Buckling. Adv. Struct. Eng. 2017, 20, 641–657. [Google Scholar] [CrossRef]
- Wang, C.L.; Gao, Y.; Cheng, X.Q.; Zeng, B.; Zhao, S.L. Experimental Investigation on H-section Buckling-restrained Braces with Partially Restrained Flange. Eng. Struct. 2019, 199, 109584. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, J.W.; Qing, Y.; Wang, C.L. A New H-section Buckling-restrained Brace Improved by Movable Steel Blocks and Stiffening Ribs. J. Build. Eng. 2022, 45, 103650. [Google Scholar] [CrossRef]
- Zhao, J.X.; Wu, B.; Ou, J.P. A Novel Type of Angle Steel Buckling-restrained Brace: Cyclic Behavior and Failure Mechanism. Earthq. Eng. Struct. Dyn. 2011, 40, 1083–1102. [Google Scholar] [CrossRef]
- Zhao, J.X.; Wu, B.; Li, W.; Ou, J.P. Local Buckling Behavior of Steel Angle Core Members in Buckling-restrained braces: Cyclic Tests, Theoretical Analysis, and Design Recommendations. Eng. Struct. 2015, 66, 129–145. [Google Scholar] [CrossRef]
- Piluso, V.; Pisapia, A. Interactive Plastic Local Buckling of Box-shaped Aluminium Members under Uniform Compression. Thin-Walled Struct. 2021, 164, 107828. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1987; p. 387. [Google Scholar]
- Chen, J. Stability of Steel Structures: Theory and Design, 4th ed.; Science Press: Beijing, China, 2008; p. 414. (In Chinese) [Google Scholar]
- Bleich, F. Buckling Strength of Metal Structures; McGraw-Hill Publishing Company: New York, NY, USA, 1952; p. 307. [Google Scholar]
a = 30b | a = 20b | a = 10b | a = 5b | a = 2b | |
---|---|---|---|---|---|
kx0 | 0.4298 | 0.4357 | 0.4679 | 0.5965 | 1.4964 |
kcr | 0.4294 | 0.4350 | 0.4650 | 0.5850 | 1.4250 |
Δk | 0.0004 | 0.0007 | 0.0029 | 0.0115 | 0.0714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Dong, J.; Qu, H.; Wang, L.; Zhao, K. Local Buckling Development of H-Section Steel Core of Buckling-Restrained Brace. Buildings 2022, 12, 227. https://doi.org/10.3390/buildings12020227
Li W, Dong J, Qu H, Wang L, Zhao K. Local Buckling Development of H-Section Steel Core of Buckling-Restrained Brace. Buildings. 2022; 12(2):227. https://doi.org/10.3390/buildings12020227
Chicago/Turabian StyleLi, Wei, Jing Dong, Hui Qu, Lanqin Wang, and Kun Zhao. 2022. "Local Buckling Development of H-Section Steel Core of Buckling-Restrained Brace" Buildings 12, no. 2: 227. https://doi.org/10.3390/buildings12020227
APA StyleLi, W., Dong, J., Qu, H., Wang, L., & Zhao, K. (2022). Local Buckling Development of H-Section Steel Core of Buckling-Restrained Brace. Buildings, 12(2), 227. https://doi.org/10.3390/buildings12020227