Seismic Bearing Capacity of Strip Foundation on Rock Mass Obeying Modified Hoek-Brown Failure Criterion
Abstract
:1. Introduction
2. Problem Statement and Theoretical Framework
2.1. Geometric Description of the Structure and Basic Assumptions
2.2. Modified HB Failure Criterion
2.3. Generalized Tangent Method
3. Kinematic Analysis of Strip Foundation on Rock Foundation under Seismic Action
3.1. Generalized Prandtl Failure Mechanism
- -
- The rigid wedge ABC (defined by the angular parameters , ) under the base of the foundation with velocity, along the direction at an angle of with BC for rigid body motion.
- -
- The sector ACD (defined by the angle ) delineated by the logarithmic helix CD with A as the focal point, the side length of logarithmic helix shear zone is , where the length of AC is . The velocity increases exponentially from on the AC side so that on the AD side.
- -
- The rigid wedge ADE in the rock masses on the side of the foundation, which carries out rigid body motion along the direction of angle with the velocity .
- -
- The rest of the rock body remains stationary.
3.2. Calculation of Work Done by External Forces
- (1)
- work done by the vertical load, :
- (2)
- work done by rock mass gravity, :
- (3)
- work done by surface overload, :
3.3. Calculation of Internal Energy Consumption
- (1)
- shear energy dissipation inside the rock mass:
- (2)
- energy dissipation for velocity discontinuity on the velocity discontinuity line BC:
- (3)
- energy dissipation for velocity discontinuity on velocity interruption line AC:
- (4)
- energy dissipation for velocity discontinuity on velocity discontinuity line CD:
- (5)
- energy dissipation for velocity discontinuity on the velocity interrupted line DE:
3.4. Calculation of Upper Bound of Mechanism Bearing Capacity
4. Verification
4.1. Verification against Existing Theoretical Results (Analytical Solutions)
4.2. Verification against Numerical Analysis Results
- І
- Intense shear zones
- II
- Brecciated shear/faults
- Ш
- Sericite with low quartz
- Ⅳ
- Sericite with similar quartz
- V
- Sericite with high quartz
- 1.
- The calculated value of the equivalent friction angle, , is greater for rock masses with good properties, and the ultimate bearing capacity increases with an increase in .
- 2.
- The shapes of the slip surfaces of different masses are similar when reaching the failure, but with the increase in ultimate bearing capacity that can be provided, the depth of the mobilized rock mass increases and the overall volume increases.
- 3.
- The angular parameters of the failure mechanism can basically be determined within a general range: the range of values for can be set at 55° to 70°, the better the rock mass, the larger the value taken; can be set at 87°; and can be set at 90°. The shape of the damage mechanism of the rock foundation can be roughly depicted using this set of parameters.
5. Parametric Analysis
5.1. Effect of Surface Overload, q0, and Rock Mass Gravity, γ
5.2. Effect of Seismic Action and Rock Properties
5.3. Effect of Horizontal Seismic Coefficient
6. Summary and Conclusions
- The calculated value of the equivalent friction angle, , is greater for high quality rock, and the ultimate bearing capacity increases as increases.
- The shapes of the failure mechanisms for different masses are similar when approaching the failure, but with increases in the ultimate bearing capacity, the depth of the mobilized rock mass and the overall volume increase.
- The angular parameters of the failure mechanism can basically be determined within a general range: the range of values for α’ can be set at 55° to 70°, and the better the rock mass, the larger the value taken; α can be set at 87°; and δ can be set at 90°. The shape of the damage mechanism of the rock foundation can be roughly depicted using this set of parameters.
- The influence of rock mass bearing capacity parameters , , and horizontal seismic coefficient, , on the upper limit of foundation bearing capacity was evaluated as well. It was found that:
- (1)
- Decreases in the bearing capacity during an earthquake are significant, and the decrease in bearing capacity will be more drastic with the rise of the surface overload, . When the horizontal seismic coefficient, , rises from 0 to 0.1, the ultimate bearing capacity, , corresponding with the surface overload, , of 10 kPa, decreases from 11.4 MPa to 9.3 MPa, with a decrease of 18%. Meanwhile, , corresponding with the of 50 kPa, decreases from 13 MPa to 10.4 MPa, with a decrease of 20%.
- (2)
- The effect of the unit weight, , is lower in contrast to the effect of the surface overload, , on the bearing capacity. For the determined overload, , as the unit weight, , rises from 20 kN/m3 to 24 kN/m3, the ultimate bearing capacity rises by less than 0.1 MPa, while for the determined unit weight, , the ultimate bearing capacity increases with an increase in surface overload.
- (3)
- With an increase in , the bearing capacity decreases sharply and is approximately linearly related to the horizontal seismic coefficient. This significant drop indicates that seismic action has a huge weakening effect on the bearing capacity of a foundation when rises from 0 to 0.2.
- (4)
- The bearing capacity coefficient of seismic uniaxial compressive strength, without considering the unit weight of rock mass and surface overload, is also provided in the design tables, which can be used as a reference in practical engineering.
Author Contributions
Funding
Conflicts of Interest
Notations
bearing capacity of strip footing (MPa) | unit vertical load (kPa) | ||
cohesion values of soil (kPa) | horizontal force caused by earthquakes (kN/m) | ||
equivalent uniform load (kPa) | average horizontal seismic coefficient | ||
unit weight of soil or rock mass (kN/m3) | major and minor principal stresses (MPa) | ||
width of strip foundation (m) | shear stress (kPa) | ||
the coefficients of Terzaghi bearing capacity | angular parameters describing the shape of Generalized Prandtl failure mechanism (°) | ||
material constants describing the type of rock mass | velocity of the parts of Generalized Prandtl failure mechanism (m/s) | ||
material constants describing the integrity of rock mass | work done by the external forces (J) | ||
geological strength index characterizing the quality of rock mass | functions reflecting the influence of the unit weight of rock mass | ||
material constants depending on | function reflecting the influence of surface overload | ||
friction angle of soil (°) | functions reflecting the influence of the horizontal seismic acceleration | ||
-value of the intact rock mass | internal energy dissipation rate of the failure mechanism (J) | ||
, | equivalent cohesion and tangent angle of rock mass (kPa, °) | function reflecting the influence of internal energy dissipation | |
uniaxial compressive strength of rock(MPa) | parameters describing the shape of Multi-wedge failure mechanism | ||
principal axes of the right-angle coordinate system in Figure 1. being the horizontal axis and the vertical axis | parameters describing the strength of a rock mass (MPa) | ||
depth of embedment of the foundation(m) | the depth of layer, which is assumed to be 100 m in this study (m) | ||
vertical load from the superstructure (kN/m) | seismic uniaxial compressive strength bearing capacity coefficient | ||
surface overload on the ground (kN) |
References
- Ausilio, E.; Conte, E.; Dente, G. Seismic stability analysis of reinforced slopes. Soil Dyn. 2000, 19, 159–172. [Google Scholar] [CrossRef]
- Meyerhof, G.G. The ultimate bearing capacity of foundations. Géotechnique 1951, 2, 301–332. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Lee, C.F.; Jiang, H.D. A numerical study of the bearing capacity factor Nγ. Can. Geotech. J. 2001, 38, 1090–1096. [Google Scholar] [CrossRef]
- Gao, Y.F.; Zhang, F.; Lei, G.H.; Li, D.Y. An extended limit analysis of three-dimensional slope stability. Géotechnique 2013, 63, 518–524. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.X.; Li, Z.H.; Wang, W.; Sun, X.Y. A strength reduction method based on the Generalized Hoek-Brown (GHB) criterion for rock slope stability analysis. Comput. Geotech. 2020, 117, 103240. [Google Scholar]
- Saada, Z.; Maghous, S.; Garnier, D. Bearing capacity of shallow foundations on rocks obeying a modified Hoek-Brown failure criterion. Comput. Geotech. 2008, 35, 144–154. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, X.L. Three-dimensional seismic displacement analysis of rock slopes based on Hoek-Brown failure criterion. KSCE J. Civ. Eng. 2018, 22, 4334–4344. [Google Scholar] [CrossRef]
- Du, D.C.; Dias, D.; Do, N. A Simplified Way to Evaluate the Effect of Temperature on a Circular Tunnel. Geotechnics 2021, 1, 385–401. [Google Scholar] [CrossRef]
- Michalowski, R.L. Limit loads on reinforced foundation soils. J. Geotech. Geoenviron. 2004, 130, 381–390. [Google Scholar] [CrossRef]
- Du, D.C.; Dias, D.; Do, N. Effect of surcharge loading on horseshoe-shaped tunnels excavated in saturated soft rocks. JRMGE 2020, 12, 1339–1346. [Google Scholar] [CrossRef]
- Du, D.C.; Dias, D.; Do, N. U-shaped tunnel lining design using the Hyperstatic Reaction Method—Influence of the invert. Soils Found. 2020, 60, 592–607. [Google Scholar] [CrossRef]
- Yang, X.L.; Yin, J.H. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion. Int. J. Rock. Mech. Min. 2005, 42, 550–560. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.B. Bearing capacity calculation of rock foundation based on nonlinear failure criterion. IERI Proc. 2012, 1, 110–116. [Google Scholar]
- Al-Bittar, T.; Abdul-Hamid, S. Bearing capacity of spatially random rock masses obeying Hoek-Brown failure criterion. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2016, 11, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.S.; Salgado, R.; Sloan, S.W.; Kim, J.M. Limit analysis versus limit equilibrium for slope stability. J. Geotech. Geoenviron. 1998, 124, 1–11. [Google Scholar] [CrossRef]
- Kim, J.M.; Salgado, R.; Lee, J. Stability analysis of complex soil slopes using limit analysis. J. Geotech. Geoenviron. 2002, 128, 546–557. [Google Scholar] [CrossRef]
- Hoek, E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. 1990, 27, 227–229. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek-Brown failure criterion and GSI-2018 edition. JRMGE 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza, T.C.; Corkum, B. Hoek-Brown failure criterion-2002 edition. Proc. Fifth N. Am. Rock Mech. Symp. 2002, 1, 267–273. [Google Scholar]
- Zhu, H.H.; Zhang, Q.; Zhang, L.Y. Review of research progresses and applications of Hoek-Brown strength criterion. Rock Mech. Rock Eng. 2013, 32, 1945–1963. [Google Scholar]
- Zhu, H.H.; Zhang, Q. A constitutive model based on the modified generalized three-dimensional Hoek–Brown strength criterion. Int. J. Rock Mech. Min. Sci. 2017, 98, 78–87. [Google Scholar] [CrossRef]
- Zhu, H.H.; Zhang, Q.; Zhang, L.Y. Modification of a generalized three-dimensional Hoek–Brown strength criterion. Int. J. Rock Mech. Min. Sci. 2013, 59, 80–96. [Google Scholar]
- Hasanzadehshooiili, H.; Lakirouhani, A.; Medzvieckas, J. Evaluating elastic-plastic behaviour of rock materials using Hoek-Brown failure criterion. J. Civ. Eng. Manag. 2012, 18, 402–407. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.F. Limit Analysis and Soil Plasticity; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Drescher, A.; Christopoulos, C. Limit analysis slope stability with nonlinear yield condition. Int. J. Numer. Anal. Met. 1988, 12, 341–345. [Google Scholar] [CrossRef]
- Collins, I.F.; Gunn, C.I.M.; Pender, M.J.; Wang, Y. Slope stability analyses for materials with a non-linear failure envelope. Int. J. Numer. Anal. Met. 1988, 12, 12533–12550. [Google Scholar] [CrossRef]
- Saada, Z.; Maghous, S.; Garnier, D. Seismic bearing capacity of shallow foundations near rock slopes using the generalized Hoek-Brown criterion. Int. J. Numer. Anal. Met. 2011, 35, 724–748. [Google Scholar] [CrossRef]
- Mao, J.Z.; Huang, Z.W.; Xiao, L.P.; Du, S.H. Prediction of mechanical parameters of the surrounding rock based on Hoek-Brown criterion. IOP Conf. Ser. Earth Environ. Sci. 2020, 570, 052071. [Google Scholar] [CrossRef]
Bearing Capacity q0 (kPa) | 10 | 20 | 30 | 40 |
Results of Yang and Yin (MPa) | 14.383 | 14.568 | 14.745 | 14.914 |
Results of present work (MPa) | 14.684 | 15.707 | 16.099 | 16.492 |
Error (%) | 2.05 | 7.25 | 8.42 | 9.57 |
No. | Rock Mass Properties | σc (MPa) | GSI | D | mi | qu,analysis (MPa) | qu,numerical (MPa) | Δq (MPa) | Error (%) |
---|---|---|---|---|---|---|---|---|---|
I | Intense shear zones | 7.5 | 25 | 0 | 22 | 11.43 | 11.10 | 0.33 | 2.9 |
II | Brecciated shear/faults | 25 | 25 | 0 | 20 | 38.35 | 37.57 | 0.78 | 2.0 |
III | Sericite with low quartz | 20 | 34 | 0 | 15.5 | 35.85 | 35.62 | 0.23 | 0.6 |
Ⅳ | Sericite with similar quartz | 40 | 47 | 0 | 14 | 170.30 | 163.48 | 6.82 | 4.0 |
V | Sericite with high quartz | 60 | 60 | 0 | 25 | 216.36 | 214.76 | 1.6 | 0.7 |
q0 (kPa) | qu (MPa) | ∆qu | |
---|---|---|---|
kh = 0 | kh = 0.1 | ||
0 | 11.43 | 9.23 | 2.20 |
10 | 11.74 | 9.46 | 2.28 |
20 | 12.05 | 9.70 | 2.35 |
30 | 12.35 | 9.94 | 2.41 |
40 | 12.66 | 10.17 | 2.49 |
50 | 12.97 | 10.41 | 2.56 |
GSI | kh = 0 | kh = 0.05 | kh = 0.1 | kh = 0.15 | kh = 0.2 |
---|---|---|---|---|---|
5 | 0.36 | 0.33 | 0.30 | 0.27 | 0.25 |
10 | 0.56 | 0.51 | 0.47 | 0.42 | 0.38 |
15 | 0.80 | 0.73 | 0.66 | 0.60 | 0.54 |
20 | 1.09 | 0.99 | 0.89 | 0.80 | 0.72 |
25 | 1.43 | 1.30 | 1.17 | 1.05 | 0.94 |
30 | 1.85 | 1.67 | 1.50 | 1.34 | 1.19 |
35 | 2.35 | 2.12 | 1.90 | 1.69 | 1.50 |
40 | 2.98 | 2.67 | 2.38 | 2.12 | 1.87 |
45 | 3.77 | 3.37 | 2.99 | 2.65 | 2.34 |
50 | 4.77 | 4.25 | 3.77 | 3.32 | 2.91 |
55 | 6.07 | 5.39 | 4.76 | 4.18 | 3.65 |
60 | 7.79 | 6.89 | 6.05 | 5.30 | 4.61 |
65 | 10.09 | 8.87 | 7.77 | 6.77 | 5.88 |
70 | 13.16 | 11.53 | 10.06 | 8.73 | 7.56 |
75 | 17.40 | 15.19 | 13.20 | 11.42 | 9.83 |
80 | 23.37 | 20.32 | 17.59 | 15.12 | 12.96 |
GSI | kh = 0 | kh = 0.05 | kh = 0.1 | kh = 0.15 | kh = 0.2 |
---|---|---|---|---|---|
5 | 0.24 | 0.22 | 0.20 | 0.18 | 0.16 |
10 | 0.43 | 0.39 | 0.35 | 0.31 | 0.28 |
15 | 0.68 | 0.61 | 0.55 | 0.49 | 0.43 |
20 | 1.00 | 0.90 | 0.80 | 0.71 | 0.63 |
25 | 1.42 | 1.26 | 1.12 | 0.99 | 0.87 |
30 | 1.95 | 1.73 | 1.53 | 1.34 | 1.17 |
35 | 2.64 | 2.33 | 2.04 | 1.78 | 1.55 |
40 | 3.53 | 3.10 | 2.71 | 2.35 | 2.04 |
45 | 4.70 | 4.11 | 3.58 | 3.10 | 2.68 |
50 | 6.31 | 5.49 | 4.76 | 4.10 | 3.51 |
55 | 8.52 | 7.38 | 6.35 | 5.44 | 4.65 |
60 | 11.59 | 9.97 | 8.54 | 7.29 | 6.20 |
65 | 15.91 | 13.63 | 11.62 | 9.87 | 8.36 |
70 | 22.15 | 18.89 | 16.04 | 13.57 | 11.44 |
75 | 31.26 | 26.54 | 22.43 | 18.90 | 15.85 |
80 | 44.50 | 37.61 | 31.67 | 26.50 | 22.12 |
GSI | kh = 0 | kh = 0.05 | kh = 0.1 | kh = 0.15 | kh = 0.2 |
---|---|---|---|---|---|
5 | 0.19 | 0.17 | 0.16 | 0.14 | 0.13 |
10 | 0.32 | 0.29 | 0.27 | 0.24 | 0.22 |
15 | 0.50 | 0.45 | 0.41 | 0.37 | 0.33 |
20 | 0.72 | 0.65 | 0.58 | 0.52 | 0.46 |
25 | 0.99 | 0.89 | 0.80 | 0.71 | 0.63 |
30 | 1.33 | 1.20 | 1.07 | 0.94 | 0.83 |
35 | 1.76 | 1.57 | 1.40 | 1.24 | 1.09 |
40 | 2.31 | 2.05 | 1.82 | 1.60 | 1.40 |
45 | 3.03 | 2.68 | 2.36 | 2.07 | 1.80 |
50 | 3.98 | 3.51 | 3.07 | 2.68 | 2.33 |
55 | 5.24 | 4.60 | 4.02 | 3.49 | 3.03 |
60 | 6.98 | 6.10 | 5.31 | 4.60 | 3.98 |
65 | 9.42 | 8.20 | 7.11 | 6.13 | 5.26 |
70 | 12.90 | 11.19 | 9.63 | 8.26 | 7.06 |
GSI | kh = 0 | kh = 0.05 | kh = 0.1 | kh = 0.15 | kh = 0.2 |
---|---|---|---|---|---|
5 | 0.14 | 0.13 | 0.12 | 0.11 | 0.10 |
10 | 0.26 | 0.24 | 0.21 | 0.19 | 0.17 |
15 | 0.43 | 0.39 | 0.35 | 0.31 | 0.28 |
20 | 0.66 | 0.59 | 0.53 | 0.47 | 0.41 |
25 | 0.96 | 0.85 | 0.76 | 0.67 | 0.59 |
30 | 1.34 | 1.19 | 1.05 | 0.92 | 0.81 |
35 | 1.86 | 1.64 | 1.44 | 1.25 | 1.09 |
40 | 2.53 | 2.22 | 1.94 | 1.68 | 1.46 |
45 | 3.43 | 3.00 | 2.61 | 2.26 | 1.95 |
50 | 4.69 | 4.08 | 3.53 | 3.04 | 2.62 |
55 | 6.46 | 5.59 | 4.81 | 4.12 | 3.52 |
60 | 8.95 | 7.71 | 6.60 | 5.63 | 4.79 |
65 | 12.52 | 10.73 | 9.16 | 7.79 | 6.60 |
70 | 17.66 | 15.08 | 12.83 | 10.87 | 9.18 |
75 | 24.95 | 21.25 | 18.02 | 15.22 | 12.82 |
80 | 35.02 | 29.74 | 25.16 | 21.20 | 17.81 |
GSI | kh = 0 | kh = 0.05 | kh = 0.1 | kh = 0.15 | kh = 0.2 |
---|---|---|---|---|---|
5 | 0.29 | 0.26 | 0.24 | 0.21 | 0.18 |
10 | 0.58 | 0.51 | 0.45 | 0.40 | 0.35 |
15 | 1.01 | 0.89 | 0.78 | 0.68 | 0.59 |
20 | 1.61 | 1.41 | 1.23 | 1.07 | 0.92 |
25 | 2.46 | 2.14 | 1.85 | 1.59 | 1.37 |
30 | 3.62 | 3.13 | 2.69 | 2.30 | 1.96 |
35 | 5.19 | 4.45 | 3.80 | 3.24 | 2.75 |
40 | 7.37 | 6.29 | 5.34 | 4.52 | 3.81 |
45 | 10.47 | 8.88 | 7.50 | 6.31 | 5.28 |
50 | 14.95 | 12.58 | 10.54 | 8.79 | 7.32 |
55 | 21.33 | 17.84 | 14.85 | 12.32 | 10.19 |
60 | 30.69 | 25.51 | 21.12 | 17.42 | 14.33 |
65 | 44.64 | 36.91 | 30.38 | 24.93 | 20.40 |
70 | 65.55 | 53.85 | 44.10 | 35.99 | 29.30 |
75 | 96.33 | 78.76 | 64.21 | 52.16 | 42.27 |
80 | 140.37 | 114.33 | 92.86 | 75.13 | 60.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, D.; Liu, Z. Seismic Bearing Capacity of Strip Foundation on Rock Mass Obeying Modified Hoek-Brown Failure Criterion. Buildings 2022, 12, 2083. https://doi.org/10.3390/buildings12122083
Du D, Liu Z. Seismic Bearing Capacity of Strip Foundation on Rock Mass Obeying Modified Hoek-Brown Failure Criterion. Buildings. 2022; 12(12):2083. https://doi.org/10.3390/buildings12122083
Chicago/Turabian StyleDu, Dianchun, and Zhentao Liu. 2022. "Seismic Bearing Capacity of Strip Foundation on Rock Mass Obeying Modified Hoek-Brown Failure Criterion" Buildings 12, no. 12: 2083. https://doi.org/10.3390/buildings12122083
APA StyleDu, D., & Liu, Z. (2022). Seismic Bearing Capacity of Strip Foundation on Rock Mass Obeying Modified Hoek-Brown Failure Criterion. Buildings, 12(12), 2083. https://doi.org/10.3390/buildings12122083