Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fresh Concrete Properties
3.2. Compressive Strength
- Unfilled voids of FAC particles, which are prone to vulnerable cracking at higher loads.
- A high volume fraction of FAC increases the concrete’s internal porosity, leading to poor packing density.
3.3. Split Tensile Strength
3.4. Flexural Strength
3.5. Co-Relation between Compression to Split and Flexural Strength
3.6. Impact Strength
- Poor interlocking between the aggregates due to the brittle nature of FAC particles.
- Due to lightweight hollow aggregate phase (Specific gravity less than 1), the materials tend to initiate and propagate the cracks when the percentage replacement increases.
3.7. Microstructural Analysis
3.8. Non-Destructive Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shetty, M.S. “Concrete Technology”, Theory and Practice; Chand & Company Ltd.: New Delhi, India, 2005. [Google Scholar]
- Gunasekaran, K.; Kumar, P.; Lakshmipathy, M. Study on Properties of Coconut Shell as an Aggregate for Concrete. Ind. J. Ind. Concr. Ins. 2011, 12, 27–33. [Google Scholar]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Cillari, G.; Ricciardi, P.; Miino, M.C.; Torretta, V.; Rada, E.C.; Abbà, A. The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainability 2020, 12, 7903. [Google Scholar] [CrossRef]
- Vailati, M.; Mercuri, M.; Angiolilli, M.; Gregori, A. Natural-Fibrous Lime-Based Mortar for the Rapid Retrofitting of Heritage Masonry Buildings. Fibers 2021, 9, 68. [Google Scholar] [CrossRef]
- Kowsalya, M.; Sindhu Nachiar, S.; Anandh, S. A Review on Fly Ash Cenosphere as a Solid Waste in Concrete Application. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Feng, W.; Tang, Y.; Zhang, Y.; Qi, C.; Ma, L.; Li, L. Partially Fly Ash and Nano-Silica Incorporated Recycled Coarse Aggregate Based Concrete: Constitutive Model and Enhancement Mechanism. J. Mater. Res. Technol. 2022, 17, 192–210. [Google Scholar] [CrossRef]
- Yunchao, T.; Zheng, C.; Wanhui, F.; Yumei, N.; Cong, L.; Jieming, C. Combined Effects of Nano-Silica and Silica Fume on the Mechanical Behavior of Recycled Aggregate Concrete. Nanotechnol. Rev. 2021, 10, 819–838. [Google Scholar] [CrossRef]
- Pappu, A.; Saxena, M.; Asolekar, S.R. Solid Wastes Generation in India and Their Recycling Potential in Building Materials. Build. Environ. 2007, 42, 2311–2320. [Google Scholar] [CrossRef]
- Singh, M. Coal Bottom Ash. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–50. ISBN 9780081021569. [Google Scholar]
- Andrade, L.B.; Rocha, J.C.; Cheriaf, M. Influence of Coal Bottom Ash as Fine Aggregate on Fresh Properties of Concrete. Constr. Build. Mater. 2009, 23, 609–614. [Google Scholar] [CrossRef]
- Cadersa, A.S. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate Replacement in Concrete. Univ. Maurit. Res. J. 2014, 20, 62–84. [Google Scholar]
- Singh, M.; Siddique, R. Strength Properties and Micro-Structural Properties of Concrete Containing Coal Bottom Ash as Partial Replacement of Fine Aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Bindiganavile, V. Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate. Buildings 2021, 11, 191. [Google Scholar] [CrossRef]
- dos Anjos, M.A.G.; Sales, A.T.C.; Andrade, N. Blasted Copper Slag as Fine Aggregate in Portland Cement Concrete. J. Environ. Manag. 2017, 196, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabri, K.S.; Hisada, M.; Al-Saidy, A.H.; Al-Oraimi, S.K. Performance of High Strength Concrete Made with Copper Slag as a Fine Aggregate. Constr. Build. Mater. 2009, 23, 2132–2140. [Google Scholar] [CrossRef]
- Alnuaimi, A.S. Effects of Copper Slag as a Replacement for Fine Aggregate on the Behavior and Ultimate Strength of Reinforced Concrete Slender Columns. J. Eng. Res. 2012, 9, 90–102. [Google Scholar] [CrossRef]
- Naganur, J.; Chethan, B.A. Effect of Copper Slag as a Partial Replacement of Fine Aggregate on the Properties of Cement Concrete by Jayapal Naganur & Chethan B. A. Int. J. Res. 2014, 1, 882–893. [Google Scholar]
- Yüksel, I.; Bilir, T.; Özkan, Ö. Durability of Concrete Incorporating Non-Ground Blast Furnace Slag and Bottom Ash as Fine Aggregate. Build. Environ. 2007, 42, 2651–2659. [Google Scholar] [CrossRef]
- Bheel, N.; Ali, M.O.A.; Liu, Y.; Tafsirojjaman, T.; Awoyera, P.; Sor, N.H.; Romero, L.M.B. Utilization of Corn Cob Ash as Fine Aggregate and Ground Granulated Blast Furnace Slag as Cementitious Material in Concrete. Buildings 2021, 11, 422. [Google Scholar] [CrossRef]
- Dash, M.K.; Patro, S.K. Performance Assessment of Ferrochrome Slag as Partial Replacement of Fine Aggregate in Concrete. Eur. J. Environ. Civ. Eng. 2021, 25, 635–654. [Google Scholar] [CrossRef]
- Harasymiuk, J.; Rudziński, A. Old Dumped Fly Ash as a Sand Replacement in Cement Composites. Buildings 2020, 10, 67. [Google Scholar] [CrossRef]
- Rajamane, N. Fly Ash as a Sand Replacement Material in Concrete—A Study. Indian Concr. J. 2013, 1–7. [Google Scholar]
- Zhang, D.; Wang, Y.; Ma, M.; Guo, X.; Zhao, S.; Zhang, S.; Yang, Q. Effect of Equal Volume Replacement of Fine Aggregate with Fly Ash on Carbonation Resistance of Concrete. Materials 2022, 15, 1550. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R. Effect of Fine Aggregate Replacement with Class F Fly Ash on the Mechanical Properties of Concrete. Cem. Concr. Res. 2003, 33, 539–547. [Google Scholar] [CrossRef]
- Christy, F.; Tensing, D. Effect of Class-F Fly Ash as Partial Replacement with Cement and Fine Aggregate in Mortar. CSIR 2010, 17, 140–144. [Google Scholar]
- Mannan, M.A.; Ganapathy, C. Engineering Properties of Concrete with Oil Palm Shell as Coarse Aggregate. Constr. Build. Mater. 2002, 16, 29–34. [Google Scholar] [CrossRef]
- Mannan, M.A.; Ganapathy, C. Concrete from an Agricultural Waste-Oil Palm Shell(OPS). Fuel Energy Abstr. 2004, 45, 441–448. [Google Scholar] [CrossRef]
- Ng, C.H.; Mannan, M.A.; Kameswara Rao, N.S.V. Structural Performance of Precast Floor Panel Using Oil Palm Shell Solid Waste. J. Infrastruct. Syst. 2016, 22, A4016002. [Google Scholar] [CrossRef]
- Sekar, A.; Kandasamy, G. Optimization of Coconut Fiber in Coconut Shell Concrete and Its Mechanical and Bond Properties. Materials 2018, 11, 1726. [Google Scholar] [CrossRef]
- Sekar, A.; Kandasamy, G. Study on Durability Properties of Coconut Shell Concrete with Coconut Fiber. Buildings 2019, 9, 107. [Google Scholar] [CrossRef]
- Kumar, V.; Gunasekaran, K.; Professor, A. A Study on Mechanical Properties of Conventional Concrete and Coconut Shell Concrete by Replacing Cement with Silica Fume. J. Eng. Technol. 2018, 7, 437–442. [Google Scholar]
- Gunasekaran, K.; Kumar, P.S.; Lakshmipathy, M. Mechanical and Bond Properties of Coconut Shell Concrete. Constr. Build. Mater. 2011, 25, 92–98. [Google Scholar] [CrossRef]
- Ramasubramani, R.; Gunasekaran, K. Sustainable Alternate Materials for Concrete Production from Renewable Source and Waste. Sustainability 2021, 13, 1204. [Google Scholar] [CrossRef]
- Woszuk, A.; Bandura, L.; Franus, W. Fly Ash as Low Cost and Environmentally Friendly Filler and Its Effect on the Properties of Mix Asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Central Electricity Authority; Thermal Civil Design Division. Report on Fly Ash Generation at Coal/Lignite Based Thermal Power Stations and Its Utilization in the Country for the Year 2020–2021; Central Electric Authority: New Delhi, India, 2021.
- Li, G.; Deng, L.; Liu, J.; Cao, Y.; Zhang, H.; Ran, J. A New Technique for Removing Unburned Carbon from Coal Fly Ash at an Industrial Scale. Int. J. Coal Prep. Util. 2015, 35, 273–279. [Google Scholar] [CrossRef]
- Lauf, R.J. Cenospheres in Fly Ash and Conditions Favouring Their Formation. Fuel 1981, 60, 1177–1179. [Google Scholar] [CrossRef]
- Wrona, J.; Zukowski, W.; Bradlo, D.; Czuprynśki, P. Recovery of Cenospheres and Fine Fraction from Coal Fly Ash by a Novel Dry Separation Method. Energies 2020, 13, 3576. [Google Scholar] [CrossRef]
- Hirajima, T.; Petrus, H.T.B.M.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Recovery of Cenospheres from Coal Fly Ash Using a Dry Separation Process: Separation Estimation and Potential Application. Int. J. Miner. Process. 2010, 95, 18–24. [Google Scholar] [CrossRef]
- Choudhary, N.; Yadav, V.K.; Malik, P.; Khan, S.H.; Inwati, G.K.; Suriyaprabha, R.; Singh, B.; Yadav, A.K.; Ravi, R.K. Recovery of Natural Nanostructured Minerals. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; IGI Global: Hershey, PA, USA, 2020; pp. 450–470. [Google Scholar]
- Chavez Alcala, J.F.; Morales Davila, R.; Lastra Quintero, R. Recovery of Cenospheres and Magnetite from Coal Burning Power Plant Fly Ash. Trans. Iron Steel Inst. Jpn. 1987, 27, 531–538. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C. Cenospheres: A Review. Fuel 2017, 207, 1–12. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A. Formation Mechanism and Applications of Cenospheres: A Review. J. Mater. Sci. 2020, 55, 4539–4557. [Google Scholar] [CrossRef]
- Adesina, A. Sustainable Application of Cenospheres in Cementitious Materials—Overview of Performance. Dev. Built Environ. 2020, 4, 100029. [Google Scholar] [CrossRef]
- Senthamarai Kannan, K.; Andal, L.; Shanmugasundaram, M. An Investigation on Strength Development of Cement with Cenosphere and Silica Fume as Pozzolanic Replacement. Adv. Mater. Sci. Eng. 2016, 2016, 9367619. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Ma, H.; Fan, T.; Li, Z. Properties Improvement of Fly Ash Cenosphere Modified Cement Pastes Using Nano Silica. Cem. Concr. Compos. 2017, 81, 35–48. [Google Scholar] [CrossRef]
- Zhou, H.; Brooks, A.L. Thermal and Mechanical Properties of Structural Lightweight Concrete Containing Lightweight Aggregates and Fly-Ash Cenospheres. Constr. Build. Mater. 2019, 198, 512–526. [Google Scholar] [CrossRef]
- Patel, S.K.; Satpathy, H.P.; Nayak, A.N.; Mohanty, C.R. Utilization of Fly Ash Cenosphere for Production of Sustainable Lightweight Concrete. J. Inst. Eng. Ser. A 2020, 101, 179–194. [Google Scholar] [CrossRef]
- IS 12269:2013; Ordinary Portland Cement, 53 Grade—Specification. Bureau of Indian Standard: New Delhi, India, 2013.
- IS 383:2016; Coarse and Fine Aggregate for Concrete—Specification. Bureau of Indian Standard: New Delhi, India, 2016.
- IS 10262:2019; Concrete Mix Proportioning. Bureau of Indian Standard: New Delhi, India, 2019.
- IS 516:2018; Method of Tests for Strength of Concrete. Bureau of Indian Standard: New Delhi, India, 2018.
- ACI 544.1R-96; State-of-the-Art Report on Fiber Reinforced Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2001.
- IS 13311-1:1992; Method of Non-Destructive Testing of Concret, Part 1: Ultrasonic Pulse Velocity. Bureau of Indian Standard: New Delhi, India, 1992.
- McBride, S.P.; Shukla, A.; Bose, A. Processing and Characterization of a Lightweight Concrete Using Cenospheres. J. Mater. Sci. 2002, 37, 4217–4225. [Google Scholar] [CrossRef]
- Blanco, F.; García, P.; Mateos, P.; Ayala, J. Characteristics and Properties of Lightweight Concrete Manufactured with Cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Basar, H.M.; Deveci Aksoy, N. The Effect of Waste Foundry Sand (WFS) as Partial Replacement of Sand on the Mechanical, Leaching and Micro-Structural Characteristics of Ready-Mixed Concrete. Constr. Build. Mater. 2012, 35, 508–515. [Google Scholar] [CrossRef]
- Aggarwal, Y.; Siddique, R. Microstructure and Properties of Concrete Using Bottom Ash and Waste Foundry Sand as Partial Replacement of Fine Aggregates. Constr. Build. Mater. 2014, 54, 210–223. [Google Scholar] [CrossRef]
- Newman, J.; Owens, P. Properties of Light Weight Concrete. In Advanced Concrete Technology, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2003. [Google Scholar]
- Neville, A.M. Properties of Concrete, 5th ed.; Person Education Limited: New Delhi, India, 2013. [Google Scholar]
- ACI 318; Building Code Requirement for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2011.
- IS 456:2000; Plain and Reinforced Concrete—Code of Practice (Fourth Revision). Bureau of Indian Standard: New Delhi, India, 2000.
- EHE. Spanish Code for Structural Concrete; Real Decreto 2661/1998; Ministerio de Fomento: Madrid, Spain, 1998. [Google Scholar]
- GB:10010; Code for Design of Concrete Structures. Chinese Standard; China Building Science Academy: Beijing, China, 2002.
- Comite Euro-International du Beton. CEB-FIP Model Code 1990; Thomas Telford: London, UK, 1991. [Google Scholar]
- NBR 6118; Design of Concrete Structures. Brazilian Association of Technical Standards: Sao Paulo, Brazil, 2003.
- DG/TJ; Technical Code for Application of Recycled Aggregate Concrete. Shangai Construction Standard Society (SCSS): Shangai, China, 2008.
Property | OPC | CA | Limiting Value |
---|---|---|---|
Specific Gravity | 3.10 | 2.67 | OPC—3–3.15 CA—2.5–3 |
Consistency (%) | 32 | - | 25–35% |
Initial Setting Time (min) | 44 | - | ≥30 min |
Final Setting Time (min) | 429 | - | ≤600 min |
Soundness (mm) | 2 | - | ≯10mm |
Size | ≤90 µm | ≥4.75 mm–10 mm | - |
Aggregate Zone | - | Zone II | - |
Flakiness Index (%) | - | 8 | ≯15% |
Elongation Index (%) | - | 7 | ≯15% |
Impact Resistance (%) | - | 18.22 | ≯30% |
Crushing Strength (%) | - | 12.73 | ≯30% |
Abrasion Value (%) | - | 11.7 | ≯30% |
Mix ID | Cement (kg/m3) | M SAND (kg/m3) | FAC (kg/m3) | Coarse Aggregate (kg/m3) | w/c Ratio | Volume Replacement (%) |
---|---|---|---|---|---|---|
CC | 430.00 | 838.72 | - | 845.05 | 0.50 | 0 |
FACC5 | 430.00 | 796.78 | 11.55 | 845.05 | 0.50 | 5 |
FACC10 | 430.00 | 754.85 | 23.11 | 845.05 | 0.50 | 10 |
FACC15 | 430.00 | 712.91 | 34.66 | 845.05 | 0.50 | 15 |
FACC20 | 430.00 | 670.98 | 46.21 | 845.05 | 0.50 | 20 |
FACC25 | 430.00 | 629.04 | 57.76 | 845.05 | 0.50 | 25 |
FACC30 | 430.00 | 587.10 | 69.32 | 845.05 | 0.50 | 30 |
FACC35 | 430.00 | 545.17 | 80.87 | 845.05 | 0.50 | 35 |
FACC40 | 430.00 | 503.23 | 92.42 | 845.05 | 0.50 | 40 |
FACC45 | 430.00 | 461.30 | 103.97 | 845.05 | 0.50 | 45 |
FACC50 | 430.00 | 419.36 | 115.53 | 845.05 | 0.50 | 50 |
FACC75 | 430.00 | 209.68 | 173.29 | 845.05 | 0.50 | 75 |
FACC100 | 430.00 | - | 231.05 | 845.05 | 0.50 | 100 |
Sl.No. | Test Conducted | Specimen Dimension * | No. of Specimens ** |
---|---|---|---|
1 | Compressive Strength Test as per IS 516:2018 [53] | For CC -1 Mix; 9 Cubes in total For FACC-12 Mix; 9 Cubes each mix; total 108 cubes | |
2. | Split Tensile Strength Test as per IS 516:2018 | For CC-1 Mix; 9 Cylinders in total For FACC-12 Mix; 9 Cylinder each mix; total 108 cylinder | |
3. | Flexural Strength Test as per IS 516:2018 | For CC-1 Mix; 9 Prism in total For FACC-12 Mix; 9 Prism each mix; total 108 Beam | |
4. | Impact Strength Test as per ACI committee 544.1R-82 [54] | For CC-1 Mix; 9 discs in total For FACC-12 Mix; 9 Cylinder each mix; total 108 Disc | |
5. | Microstructural Analysis [SEM and XRD] | Core samples of Tested Specimens under compression, Split and flexure test were taken | For all CC and FACC mix |
6. | Non-Destructive Testing as per IS 13311 Part (1) 1992 [55] | The samples were tested before proceeding the compression test |
Mix ID | Density (kg/m3) | Compressive Strength (N/mm2) | Standard Deviation | Split Tensile Strength (N/mm2) | Standard Deviation | Flexural Strength (N/mm2) | Standard Deviation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | Hardened | 7 d | 14 d | 28 d | 7 d | 14 d | 28 d | 7 d | 14 d | 28 d | 7 d | 14 d | 28 d | 7 d | 14 d | 28 d | 7 d | 14 d | 28 d | |
CC | 2523 | 2450 | 28.90 | 34.60 | 38.40 | 0.72 | 0.82 | 0.81 | 2.38 | 3.27 | 3.60 | 0.71 | 0.67 | 0.70 | 1.80 | 4.03 | 5.60 | 0.26 | 0.50 | 1.23 |
FACC5 | 2508 | 2430 | 27.70 | 34.30 | 37.50 | 0.60 | 0.79 | 0.72 | 2.26 | 3.24 | 3.57 | 0.59 | 0.64 | 0.67 | 1.77 | 4.01 | 5.48 | 0.23 | 0.48 | 1.11 |
FACC10 | 2483 | 2411 | 25.70 | 32.80 | 36.70 | 0.40 | 0.64 | 0.64 | 2.21 | 3.15 | 3.46 | 0.54 | 0.55 | 0.56 | 1.72 | 3.97 | 5.21 | 0.18 | 0.44 | 0.84 |
FACC15 | 2446 | 2375 | 25.70 | 31.00 | 35.10 | 0.40 | 0.40 | 0.48 | 2.02 | 3.03 | 3.37 | 0.35 | 0.43 | 0.47 | 1.69 | 3.84 | 4.89 | 0.15 | 0.31 | 0.52 |
FACC20 | 2407 | 2337 | 24.10 | 29.10 | 34.10 | 0.20 | 0.28 | 0.38 | 1.87 | 2.90 | 3.24 | 0.20 | 0.30 | 0.34 | 1.67 | 3.77 | 4.78 | 0.13 | 0.24 | 0.41 |
FACC25 | 2352 | 2284 | 22.20 | 28.60 | 33.70 | 0.58 | 0.22 | 0.34 | 1.81 | 2.84 | 3.19 | 0.14 | 0.24 | 0.29 | 1.58 | 3.65 | 4.65 | 0.40 | 0.12 | 0.28 |
FACC30 | 2318 | 2251 | 22.00 | 27.70 | 32.70 | 0.38 | 0.13 | 0.24 | 1.61 | 2.66 | 3.01 | 0.18 | 0.65 | 0.11 | 1.54 | 3.54 | 4.40 | 0.80 | 0.45 | 0.38 |
FACC35 | 2261 | 2206 | 21.40 | 26.30 | 32.10 | 0.25 | 0.98 | 0.94 | 1.54 | 2.57 | 2.98 | 0.10 | 0.70 | 0.84 | 1.47 | 3.47 | 4.20 | 0.10 | 0.19 | 0.20 |
FACC40 | 2226 | 2171 | 19.50 | 24.50 | 28.50 | 1.18 | 1.82 | 1.04 | 1.40 | 2.55 | 2.82 | 0.30 | 0.10 | 0.10 | 1.44 | 3.42 | 3.98 | 0.90 | 0.10 | 0.40 |
FACC45 | 2184 | 2131 | 19.00 | 22.30 | 26.50 | 1.64 | 0.40 | 0.37 | 1.34 | 2.40 | 2.68 | 0.30 | 0.20 | 0.20 | 1.41 | 3.39 | 3.87 | 0.36 | 1.10 | 0.50 |
FACC50 | 2143 | 2084 | 18.60 | 20.80 | 24.10 | 1.02 | 0.54 | 0.98 | 1.29 | 2.10 | 2.34 | 0.40 | 0.50 | 0.60 | 1.40 | 3.26 | 3.65 | 0.10 | 0.30 | 0.70 |
FACC75 | 1885 | 1833 | 15.00 | 16.80 | 19.40 | 0.60 | 0.94 | 0.78 | 1.19 | 1.79 | 2.00 | 0.50 | 0.80 | 0.90 | 1.30 | 2.88 | 3.20 | 0.20 | 0.70 | 1.20 |
FACC100 | 1654 | 1609 | 11.60 | 13.40 | 14.80 | 0.94 | 0.59 | 0.76 | 0.84 | 1.25 | 1.39 | 0.80 | 1.40 | 1.50 | 1.20 | 2.66 | 2.95 | 0.30 | 0.90 | 1.40 |
Mix Id | Compressive Strength (N/mm2) | Split Tensile Strength (N/mm2) | Flexural Strength (N/mm2) | Split/ Compression | Flexural/ Compression |
---|---|---|---|---|---|
CC | 38.40 | 3.60 | 5.60 | 0.09 | 0.15 |
FACC5 | 37.50 | 3.57 | 5.48 | 0.10 | 0.15 |
FACC10 | 36.70 | 3.46 | 5.21 | 0.09 | 0.14 |
FACC15 | 35.12 | 3.37 | 4.89 | 0.10 | 0.14 |
FACC20 | 34.13 | 3.24 | 4.78 | 0.09 | 0.14 |
FACC25 | 33.70 | 3.19 | 4.65 | 0.09 | 0.14 |
FACC30 | 32.70 | 3.01 | 4.40 | 0.09 | 0.13 |
FACC35 | 32.10 | 2.98 | 4.20 | 0.09 | 0.13 |
FACC40 | 28.47 | 2.82 | 3.98 | 0.10 | 0.14 |
FACC45 | 26.50 | 2.68 | 3.87 | 0.10 | 0.15 |
FACC50 | 24.10 | 2.34 | 3.65 | 0.10 | 0.15 |
FACC75 | 19.40 | 2.00 | 3.20 | 0.10 | 0.16 |
FACC100 | 14.80 | 1.39 | 2.95 | 0.09 | 0.20 |
Split Tensile Strength | Flexural Strength | ||
---|---|---|---|
ACI 318 [62]; | fsp = 0.56 | IS 456: 2000 [63]; | ft = 0.7 |
EHE [64]; | fsp= 0.21 (f′c)2/3 | ACI 318 [62]; | ft = 0.62 |
GB [65]; | fsp = 0.19 (f′c)0.75 | CEB FIP [66]; | ft = 0.81 |
NBR 6118 [67]; | fsp = 0.19 (f′c)2/3 | DG/TJ [68]; | ft = 0.75 |
CEB FIP [66]; | fsp = 1.56 ()2/3 |
Mix ID | Impact Energy (J) | Variation in Impact Energy (%) | |
---|---|---|---|
Initial Crack | Failure | ||
CC | 1361.28 | 1383.43 | - |
FACC5 | 1219.06 | 1322.40 | 4.41 |
FACC10 | 1200.33 | 1220.67 | 11.76 |
FACC15 | 1159.64 | 1179.98 | 14.71 |
FACC20 | 1078.26 | 1139.30 | 17.65 |
FACC25 | 976.54 | 996.88 | 27.94 |
FACC30 | 956.19 | 976.54 | 29.41 |
FACC35 | 691.71 | 732.40 | 47.06 |
FACC40 | 651.03 | 671.37 | 51.47 |
FACC45 | 488.27 | 508.61 | 63.24 |
FACC50 | 467.92 | 488.27 | 64.70 |
FACC75 | 427.24 | 467.92 | 66.18 |
FACC100 | 142.41 | 203.45 | 85.29 |
Mix | Velocity (km/s) | Concrete Quality Grading as per IS 13311-Part I, 1992 | Compressive Strength of Concrete (Rebound Hammer) MPa | Compressive Strength of Concrete (Cube Results) MPa |
---|---|---|---|---|
CC | 4808 | Excellent | 42.10 | 38.40 |
FACC5 | 4751 | Excellent | 31.50 | 27.50 |
FACC10 | 4672 | Excellent | 33.50 | 29.60 |
FACC15 | 4549 | Excellent | 35.40 | 30.00 |
FACC20 | 4487 | Good | 36.10 | 31.13 |
FACC25 | 4210 | Good | 34.50 | 32.67 |
FACC30 | 4108 | Good | 35.90 | 33.40 |
FACC35 | 4010 | Good | 33.60 | 32.90 |
FACC40 | 3987 | Good | 30.10 | 28.47 |
FACC45 | 3828 | Good | 28.40 | 26.50 |
FACC50 | 3748 | Good | 26.70 | 24.10 |
FACC75 | 3472 | Medium | 21.80 | 18.10 |
FACC100 | 3448 | Medium | 19.80 | 14.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowsalya, M.; Sindhu Nachiar, S.; Sekar, A.; Ravichandran, P.T. Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach. Buildings 2022, 12, 1679. https://doi.org/10.3390/buildings12101679
Kowsalya M, Sindhu Nachiar S, Sekar A, Ravichandran PT. Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach. Buildings. 2022; 12(10):1679. https://doi.org/10.3390/buildings12101679
Chicago/Turabian StyleKowsalya, M, S Sindhu Nachiar, Anandh Sekar, and P. T. Ravichandran. 2022. "Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach" Buildings 12, no. 10: 1679. https://doi.org/10.3390/buildings12101679
APA StyleKowsalya, M., Sindhu Nachiar, S., Sekar, A., & Ravichandran, P. T. (2022). Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach. Buildings, 12(10), 1679. https://doi.org/10.3390/buildings12101679