Metal Crystal and Polycrystal Plastic Strain Hardening
1. Introduction
2. Discussion
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Armstrong, R. Metal crystal/polycrystal plasticity and strengths. Metals 2022, 12, 2070. https://doi.org/10.3390/met9020154.
- Saffarini, M.; Voyiadjis, G. Atomistic-continuum constitutive modeling connection for gold foams under compression at high strain rates: the dislocation density effect. Metals 2023, 13, 652. https://doi.org/10.3390/met13040652.
- Vinogradov, A.; Estrin, Y. Hall-Petch description of the necking point stress. Metals 2023, 13, 690. https://doi.org/10.3390/met13040690.
- Zubelewicz, A.; Clayton, J. Yield surfaces and plastic potentials for metals, with analysis of plastic dilatation and strength asymmetry in BCC crystals. Metals 2023, 13, 523. https://doi.org/10.3390/met13030523.
- Kunda, S.; Schmelzer, N.; Pedgaonkar, A.; Rees, J.; Dunham, S.; Lieou, C.; Langbaum, J.; Bronkhorst, C. Study of the thermomechanical behavior of single-crystal and polycrystal copper. Metals 2024, 14, 1086. https://doi.org/10.3390/met14091086.
- You, X.; Hasebe, T. Modeling and simulation of fatigue crack initiation process based on field theory of multiscale plasticity (FTMP). Part I: PSB ladder formation and verification. Metals 2024, 14, 1392. https://doi.org/10.3390/met14121392.
- You, X.; Hasebe, T. Modeling and simulation of fatigue crack initiation process based on field theory of multiscale plasticity (FTMP). Part II: Modeling vacancy formation and coupling with diffusion analysis. Metals 2024, 14, 1406. https://doi.org/10.3390/met14121406.
- Yan, J.; Fu, C. Understanding room-temperature ductility of bcc refractory alloys from their atomistic-level features. Metals 2025, 15, 851. https://doi.org/10.3390/met15080851.
- Clayton, J.; Casem, D.; Lloyd, J.; Retzlaff, E. Toward material property extraction from dynamic spherical indentation experiments on hardening polycrystalline metals. Metals 2023, 13, 276. https://doi.org/10.3390/met13020276.
References
- Armstrong, R. Dislocation mechanics pile-up and thermal activation roles in metal plasticity and fracturing. Metals 2019, 9, 154. [Google Scholar] [CrossRef]
- Taylor, G. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 1934, 145, 362–387. [Google Scholar]
- Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: New York, NY, USA, 1950. [Google Scholar]
- Hall, E. The deformation and ageing of mild steel: Discussion of results. Proc. Phys. Soc. Lond. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Armstrong, R.; Codd, I.; Douthwaite, R.; Petch, N. The plastic deformation of polycrystalline aggregates. Philos. Mag. 1962, 7, 45–58. [Google Scholar] [CrossRef]
- Nabarro, F. Theory of Crystal Dislocations; Oxford University Press: London, UK, 1967. [Google Scholar]
- Hirth, J.; Lothe, J. Theory of Dislocations; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Havner, K. Finite Plastic Deformation of Crystalline Solids; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Voyiadjis, G.; Kattan, P. Advances in Damage Mechanics: Metals and Metal Matrix Composites; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Lubarda, V. Elastoplasticity Theory; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Nemat-Nasser, S. Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Clayton, J. Nonlinear Mechanics of Crystals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Hasebe, T. Field Theory of Multiscale Plasticity; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Kocks, U.; Argon, A.; Ashby, M. Thermodynamics and kinetics of slip. Prog. Mater. Sci. 1975, 19, 1–291. [Google Scholar]
- Estrin, Y. Dislocation-density-related constitutive modeling. In Unified Constitutive Laws of Plastic Deformation; Krausz, A., Krausz, K., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 69–106. [Google Scholar]
- McDowell, D. Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R Rep. 2008, 62, 67–123. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Zerilli, F.; Armstrong, R. Dislocation-mechanics-based constitutive equations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef]
- Bronkhorst, C.; Kalidindi, S.; Anand, L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos. Trans. R. Soc. Lond. A 1992, 341, 443–477. [Google Scholar]
- Kalidindi, S.; Bronkhorst, C.; Anand, L. Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 1992, 40, 537–569. [Google Scholar] [CrossRef]
- Zubelewicz, A. Micromechanical study of ductile polycrystalline materials. J. Mech. Phys. Solids 1993, 41, 1711–1722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clayton, J.D. Metal Crystal and Polycrystal Plastic Strain Hardening. Metals 2025, 15, 976. https://doi.org/10.3390/met15090976
Clayton JD. Metal Crystal and Polycrystal Plastic Strain Hardening. Metals. 2025; 15(9):976. https://doi.org/10.3390/met15090976
Chicago/Turabian StyleClayton, John D. 2025. "Metal Crystal and Polycrystal Plastic Strain Hardening" Metals 15, no. 9: 976. https://doi.org/10.3390/met15090976
APA StyleClayton, J. D. (2025). Metal Crystal and Polycrystal Plastic Strain Hardening. Metals, 15(9), 976. https://doi.org/10.3390/met15090976