Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel
Abstract
1. Introduction
2. Experimental Materials and Procedures
2.1. Experimental Materials
2.2. Mechanical Properties
2.3. Friction Wear Test
2.4. Microstructure Observation
3. Results and Discussion
3.1. Effect of Solution Treatment on Microstructures of High-Manganese Steel
3.2. Effects of Solution Treatment on the Mechanical Properties of High-Manganese Steel
3.3. Effect of Solution Treatment on the Wear Characteristics of High-Manganese Steel
3.4. Effect of Solution Treatment on the Wear Mechanism of High-Manganese Steel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weeks, J.D. Hadfield’s manganese steel. Science 1888, 12, 284–286. [Google Scholar] [CrossRef]
- Wen, Y.H.; Peng, H.B.; Si, H.T.; Xiong, R.L.; Raabe, D. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Mater. Des. 2014, 55, 798–804. [Google Scholar] [CrossRef]
- Efstathiou, C.; Sehitoglu, H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Mater. 2010, 58, 1479–1488. [Google Scholar] [CrossRef]
- El Fawkhry, M.K. Feasibility of new ladle-treated Hadfield steel for mining purposes. Int. J. Miner. Metall. Mater. 2018, 25, 300–309. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Zhao, Y.; Wu, L.; Zhang, F.; Shan, Q. Effect of progressive solid-solution treatment on microstructures, mechanical properties and impact abrasive wear behavior of alloyed high manganese steel. Mater. Res. Express 2022, 9, 036512. [Google Scholar] [CrossRef]
- Barbangelo, A. Influence of alloying elements and heat treatment on impact toughness of chromium steel surface deposits. J. Mater. Sci. 1990, 25, 2975–2984. [Google Scholar] [CrossRef]
- Reyes-Calderón, F.; Mejía, I.; Boulaajaj, A.; Cabrera, J.M. Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel. Mater. Sci. Eng. A 2013, 560, 552–560. [Google Scholar] [CrossRef]
- Scott, C.; Remy, B.; Collet, J.-L.; Cael, A.; Bao, C.; Danoix, F.; Malard, B.; Curfs, C. Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mater. Res. 2011, 102, 538–549. [Google Scholar] [CrossRef]
- Feng, X.Y.; Zhang, F.C.; Yang, Z.N.; Zhang, M. Wear behaviour of nanocrystallised Hadfield steel. Wear 2013, 305, 299–304. [Google Scholar] [CrossRef]
- Beheshti, M.; Zabihiazadboni, M.; Ismail, M.C.; Kakooei, S.; Shahrestani, S. Investigation on simultaneous effects of shot peen and austenitizing time and temperature on grain size and microstructure of austenitic manganese steel (Hadfield). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 328, p. 012006. [Google Scholar]
- Meng, S.; Cui, C.Y.; Chen, K.; Zhao, K. Microstructure and mechanical properties of laser-shock-peened high-manganese steel. Electroplat. Finish 2020, 39, 760–765. [Google Scholar]
- Hu, X.; Shen, Z.; Liu, Y.; Liu, T.; Wang, F. Influence of explosive density on mechanical properties of high manganese steel explosion hardened. J. Appl. Phys. 2013, 114, 213507. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Chen, C.; Li, Y.; Yang, Z.; Lv, B.; Zhang, F. Effect of surface impacting parameters on wear resistance of high manganese steel. Coatings 2023, 13, 539. [Google Scholar] [CrossRef]
- Grajcar, A.; Borek, W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch. Civ. Mech. Eng. 2008, 8, 29–38. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Shan, Q.; Li, Z.; Jiang, Y.; Ge, R. Influence of heat-treatment on enhancement of yield strength and hardness by Ti-V-Nb alloying in high-manganese austenitic steel. Metals 2019, 9, 299. [Google Scholar] [CrossRef]
- Feng, Y.; Song, R.; Peng, S.; Pei, Z.; Song, R. Microstructures and impact wear behavior of Al-alloyed high-Mn austenitic cast steel after aging treatment. J. Mater. Eng. Perform. 2019, 28, 4845–4855. [Google Scholar] [CrossRef]
- Pu, J.; Li, Z.; Hu, Q.; Wang, Y. Effect of heat treatment on microstructure and wear resistance of high manganese steel surfacing layer. Int. J. Mod. Phys. B 2019, 33, 1940035. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, W.Z.; Yi, G.W.; Shi, P.; Fen, X.; Sun, H. Influences of annealing on microstructures and tribological properties of Ni/Ti2AlC composites. Tribology 2022, 42, 242–253. [Google Scholar]
- GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2021.
- Yang, Y.; Liu, R.X.; Yang, H.K.; Long, J.; Han, P.; Zheng, Z. Effect of solution temperature on microstructure and properties of lightweight high manganese steel. Heat Treat. Met. 2023, 48, 113–118. [Google Scholar]
- Sun, J.; Li, Z.; Xia, M.L.; Luo, L.; Li, J.; Huang, Z. Effect of solution treatment on microstructure and properties of Fe30Mn10Al1C low density steel. Trans. Mater. Heat Treat. 2024, 45, 121–131. [Google Scholar]
- Xu, T.; Fu, B.; Jiang, Y.; Wang, J.; Li, G. Machine learning and experimental study on a novel Cr–Mo–V–Ti high manganese steel: Microstructure, mechanical properties and abrasive wear behavior. J. Mater. Res. Technol. 2024, 31, 1270–1281. [Google Scholar] [CrossRef]
- Mao, Y.S.; Du, S.M.; Fu, L.H.; Zhang, Y.; Gao, Y.; Yang, J.; Bao, X. Effect of isothermal quenching process on microstructure and friction and wear properties of GCr15SiMo steel. Tribology 2023, 43, 778–790. [Google Scholar]
- Xu, Y.R.; Zhu, T.Y.; Li, Y.J.; Wang, C.L.; Ma, T.; Hu, G.Y.; Wang, Y. Wear behavior of cobalt- based alloy brush bristles and chromium carbide coating under high line speed. Tribology 2022, 42, 1216–1225. [Google Scholar]
- Huang, Y.; Cheng, G.G.; Li, S.J.; Dai, W.X.; Xie, Y. Effect of Ti (C, N) particle on the impact toughness of B-microalloyed steel. Metals 2018, 8, 868. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhao, J.; Cao, W.Q.; Shi, J.; Wang, C.Y.; Li, J.; Dong, H. Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel. ISIJ Int. 2012, 52, 868–873. [Google Scholar] [CrossRef]
- Saeed-Akbari, A.; Mosecker, L.; Schwedt, A.; Bleck, W. Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior. Metall. Mater. Trans. A 2012, 43, 1688–1704. [Google Scholar] [CrossRef]
- Barbier, D.; Gey, N.; Bozzolo, N.; Allain, S.; Humbert, M. EBSD for analysing the twinning microstructure in fine-grained TWIP steels and its influence on work hardening. J. Microsc. 2009, 235, 67–78. [Google Scholar] [CrossRef]
- Renard, K.; Jacques, P.J. On the relationship between work hardening and twinning rate in TWIP steels. Mater. Sci. Eng. A 2012, 542, 8–14. [Google Scholar] [CrossRef]
- Ding, H.; Ding, H.; Song, D.; Tang, Z.; Yang, P. Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Mater. Sci. Eng. A 2011, 528, 868–873. [Google Scholar] [CrossRef]
- Lee, S.I.; Lee, S.Y.; Han, J.; Hwang, B. Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5C high-manganese steel: Effect of grain size. Mater. Sci. Eng. A 2019, 742, 334–343. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, M.; Wu, H.; Liang, X.; Xing, Z.; Li, H.; Zhao, L.; Jiao, S.; Jiang, Z. A review of key factors affecting the wear performance of medium manganese steels. Metals 2023, 13, 1152. [Google Scholar] [CrossRef]
- Wang, D.S.; Wang, S.Y.; Sun, S.B.; Chang, X.-T.; Yin, Y.-S. Reciprocating friction characteristics of marine Arctic steel plate at dry state room temperature. Surf. Technol. 2017, 46, 120–127. [Google Scholar]
- Peng, Y.X.; Wang, G.F.; Zhu, Z.C.; Chang, X.D.; Lu, H.; Tang, W.; Wang, D. Friction and wear characteristics of mine hoist wire rope at low temperature. Tribology 2022, 42, 552–561. [Google Scholar]
- Harsha, B.P.; Patnaik, A.; Banerjee, M.K.; Kozeschnik, E. Physical, mechanical, and tribological assessment of high manganese-silicon steel alloys. Silicon 2023, 15, 3305–3322. [Google Scholar] [CrossRef]
- Yan, X.; Hu, J.; Wang, L.; Chai, Z.; Sun, W.; Xu, W. The coupled effect of thermal and mechanical stabilities of austenite on the wear resistance in a 0.2C–5Mn-1.6Si steel down to cryogenic temperatures. Wear 2021, 486, 204116. [Google Scholar] [CrossRef]
- Rendón, J.; Olsson, M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods. Wear 2009, 267, 2055–2061. [Google Scholar] [CrossRef]
- Jost, N.; Schmidt, I. Friction-induced martensitic transformation in austenitic manganese steels. Wear 1986, 111, 377–389. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Hu, J.; Wang, G.; Xu, W. Optimum wear resistance achieved by balancing bulk hardness and work-hardening: A case study in austenitic stainless steels. Tribol. Lett. 2023, 71, 7. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | Cr | Ni | Cu | Mo | P | S | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Weight (wt%) | 0.37 | 0.14 | 25.01 | 3.69 | 0.014 | 0.48 | 0.0079 | 0.007 | 0.0083 | 0.009 | Balance |
Materials | Yield Strength /MPa | Tensile Strength /MPa | Total Elongation /% |
---|---|---|---|
Untreated | 244 ± 9.4 | 368 ± 11.2 | 46.0 ± 3.4 |
900 °C | 276 ± 7.5 | 560 ± 13.4 | 70.7 ± 4.0 |
950 °C | 268 ± 6.4 | 574 ± 12.0 | 88.0 ± 3.0 |
1000 °C | 257 ± 3.1 | 520 ± 5.2 | 61.0 ± 1.4 |
1050 °C | 252 ± 5.7 | 488 ± 7.6 | 65.7 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Li, B.; Han, X.; Zhang, X.; Yang, X. Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel. Metals 2025, 15, 937. https://doi.org/10.3390/met15090937
Qiao X, Li B, Han X, Zhang X, Yang X. Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel. Metals. 2025; 15(9):937. https://doi.org/10.3390/met15090937
Chicago/Turabian StyleQiao, Xiya, Boyong Li, Xiao Han, Xiangyun Zhang, and Xin Yang. 2025. "Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel" Metals 15, no. 9: 937. https://doi.org/10.3390/met15090937
APA StyleQiao, X., Li, B., Han, X., Zhang, X., & Yang, X. (2025). Effect of Solution Treatment on Mechanical Properties and Wear Resistance of Alloyed High-Manganese Steel. Metals, 15(9), 937. https://doi.org/10.3390/met15090937