Influence of Adjusted Melt Pool Geometries on Residual Stress in 316L LPBF Processes
Abstract
1. Introduction
1.1. Preheating
1.2. Post-Process Heat Treatment
1.3. Energy Input
1.4. Scan Pattern
- Can a deeper melt pool (introduced by a greater layer thickness) be beneficial for the residual stresses? Or is a wider melt pool (introduced by a larger hatch spacing) more advantageous when reducing RS?
1.5. Conclusions of the State of the Art
- The issue of RS resulting from the LPBF process on 316L stainless steel remains a significant challenge. This is especially true in the context of increasing part sizes and the integration into downstream welding processes.
- It is evident that the most effective method of preheating is not always technically feasible for various process-related reasons. These include cycle times, powder adhesion, and increased recalibration effort due to constant expansion and shrinkage of machine elements.
- There are already certain parameter-based approaches to reduce RS within the LPBF process which have already been the subject of extensive research.
- There remains a gap in the detailed understanding of how the geometry of the melt pool (in terms of both depth and width) affects internal stresses.
2. Materials and Methods
3. Experiments and Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Płatek, P.; Sienkiewicz, J.; Janiszewski, J.; Jiang, F. Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM). Materials 2020, 13, 2204. [Google Scholar] [CrossRef]
- Di Wang Song, C.; Yang, Y.; Bai, Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 2016, 100, 291–299. [Google Scholar] [CrossRef]
- Carpenter, K.; Tabei, A. On Residual Stress Development, Prevention, and Compensation in Metal Additive Manufacturing. Materials 2020, 13, 255. [Google Scholar] [CrossRef]
- Hooper, P.A. Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 2018, 22, 548–559. [Google Scholar] [CrossRef]
- Munsch, M. Reduzierung von Eigenspannungen und Verzug in der Laseradditiven Fertigung, 1st ed.; Lasertechnik, S., Ed.; Cuvillier Verlag: Göttingen, Germany, 2013. [Google Scholar]
- Risse, J. Additive Fertigung der Nickelbasis-Superlegierung IN738LC Mittels Selektivem Laserstrahlschmelzen. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2019. [Google Scholar]
- Klahn, C.; Meboldt, M.; Fontana, F.; Leutenecker-Twelsiek, B.; Jansen, J. (Eds.) Entwicklung und Konstruktion für die Additive Fertigung: Grundlagen und Methoden für den Einsatz in industriellen Endkundenprodukten. Ein Fachbuch von Konstruktionspraxis, 1st ed.; Vogel Business Media: Würzburg, Germany, 2018. [Google Scholar]
- Pichler, P.; Simonds, B.J.; Sowards, J.W.; Pottlacher, G. Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel. J. Mater. Sci. 2019, 55, 4081–4093. [Google Scholar] [CrossRef] [PubMed]
- Kaess, M.; Werz, M.; Weihe, S. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation. Materials 2023, 16, 2321. [Google Scholar] [CrossRef]
- Waqar, S.; Guo, K.; Sun, J. FEM analysis of thermal residual stress profile in selective laser melting of 316Lstainless steel. J. Manuf. Process. 2021, 66, 81–100. [Google Scholar] [CrossRef]
- Zhang, B.; Dembinski, L.; Coddet, C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater. Sci. Eng. A 2013, 584, 21–31. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Deckers, J.; Yasa, E.; Wauthlé, R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 980–991. [Google Scholar] [CrossRef]
- Chao, Q.; Thomas, S.; Birbilis, N.; Cizek, P.; Hodgson, P.D.; Fabijanic, D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A 2021, 821, 141611. [Google Scholar] [CrossRef]
- Cruz, V.; Chao, Q.; Birbilis, N.; Fabijanic, D.; Hodgson, P.; Thomas, S. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros. Sci. 2020, 164, 108314. [Google Scholar] [CrossRef]
- Sprengel, M.; Ulbricht, A.; Evans, A.; Kromm, A.; Sommer, K.; Werner, T.; Kelleher, J.; Bruno, G.; Kannengiesser, T. Towards the Optimization of Post-Laser Powder Bed Fusion Stress-Relieve Treatments of Stainless Steel 316L. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2021, 52, 5342–5356. [Google Scholar] [CrossRef]
- Williams, R.J.; Vecchiato, F.; Kelleher, J.; Wenman, M.R.; Hooper, P.A.; Davies, C.M. Effects of heat treatment on residual stresses in the laser powder bed fusion of 316L stainless steel: Finite element predictions and neutron diffraction measurements. J. Manuf. Process. 2020, 57, 641–653. [Google Scholar] [CrossRef]
- Tascioglu, E.; Karabulut, Y.; Kaynak, Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 107, 1947–1956. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Manuf. Technol. 2016, 87, 647–656. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J. Mater. Process. Technol. 2019, 266, 397–420. [Google Scholar] [CrossRef]
- Jagatheeshkumar, S.; Raguraman, M.; Siva Prasad, A.V.S.; Nagesha, B.K.; Chandrasekhar, U. Study of residual stresses and distortions from the Ti6Al4V based thin-walled geometries built using LPBF process. Def. Technol. 2023, 28, 33–41. [Google Scholar]
- Wu, A.S.; Brown, D.W.; Kumar, M.; Gallegos, G.F.; King, W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014, 45, 6260–6270. [Google Scholar] [CrossRef]
- Simson, T.; Emmel, A.; Dwars, A.; Böhm, J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017, 17, 183–189. [Google Scholar] [CrossRef]
- Greco, S.; Gutzeit, K.; Hotz, H.; Kirsch, B.; Aurich, J.C. Selective laser melting (SLM) of AISI 316L—Impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int. J. Adv. Manuf. Technol. 2020, 108, 1551–1562. [Google Scholar] [CrossRef]
- Mugwagwa, L.; Dimitrov, D.; Matope, S.; Yadroitsev, I. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf. 2018, 21, 92–99. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V. J. Mater. Eng Perform 2018, 27, 4059–4068. [Google Scholar] [CrossRef]
- Ilie, A.; Ali, H.; Mumtaz, K. In-Built Customised Mechanical Failure of 316L Components Fabricated Using Selective Laser Melting. Technologies 2017, 5, 9. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, C.; Zhu, H.; Hu, Z.; Nagarajan, B.; Guo, L.; Zeng, X. Study of residual stress in selective laser melting of Ti6Al4V. Mater. Des. 2020, 193, 108846. [Google Scholar] [CrossRef]
- Bian, P.; Shi, J.; Liu, Y.; Xie, Y. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Opt. Laser Technol. 2020, 132, 106477. [Google Scholar] [CrossRef]
- Robinson, J.; Ashton, I.; Fox, P.; Jones, E.; Sutcliffe, C. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018, 23, 13–24. [Google Scholar] [CrossRef]
- Robinson, J.H.; Ashton, I.R.T.; Jones, E.; Fox, P.; Sutcliffe, C. The effect of hatch angle rotation on parts manufactured using selective laser melting. Rapid Prototyp. J. 2019, 25, 289–298. [Google Scholar] [CrossRef]
- Zaeh, M.F.; Branner, G. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. Res. Devel. 2010, 4, 35–45. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Gan, Y.; Huang, T.; Yang, C.; Junjie, L.; Lin, J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt. Laser Technol. 2015, 75, 197–206. [Google Scholar] [CrossRef]
- Hajnys, J.; Pagáč, M.; Měsíček, J.; Petru, J.; Król, M. Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316L Stainless Steel. Materials 2020, 13, 1659. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Anderson, L.S.; Venter, A.M.; Vrancken, B.; Marais, D.; Van Humbeeck, J.; Becker, T.H. Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V Using Neutron Diffraction. In Mechanical Stress Evaluation by Neutron and Synchrotron Radiation; Materials Research Proceedings; Materials Research Forum LLC: Millersville, PA, USA, 2018; pp. 73–78. [Google Scholar]
- Larimian, T.; AlMangour, B.; Grzesiak, D.; Walunj, G.; Borkar, T. Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting. J. Mater. Eng. Perform. 2022, 31, 2205–2224. [Google Scholar] [CrossRef]
- Yang, X.-H.; Jiang, C.-M.; Ho, J.-R.; Tung, P.-C.; Lin, C.-K. Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting. Materials 2021, 14, 4593. [Google Scholar] [CrossRef]
- Weaver, J.S.; Heigel, J.C.; Lane, B.M. Laser spot size and scaling laws for laser beam additive manufacturing. J. Mater. Process Technol. 2022, 73, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, D.; Schilling, G.; Meiners, W.; Pirch, N.; Wissenbach, K. Untersuchung zur Reduzierung des Verzugs durch Vorwärmung bei der Herstellung von Aluminiumbauteilen mittels SLM. Rte J. 2011, 8. Available online: https://rtejournal.de/rte/article/view/2011_1/181 (accessed on 7 September 2025).
Specimen | PL [W] | Vs [mm/s] | ds [mm] | Ds [µm] | dspot [µm] | VED [J/mm3] |
---|---|---|---|---|---|---|
F1 | 150 | 900 | 0.08 | 30 | 80 | 69.44 |
F2 | 225 | 900 | 0.12 | 30 | 130 | 69.44 |
F3 | 300 | 900 | 0.16 | 30 | 180 | 69.44 |
F4 | 375 | 900 | 0.2 | 30 | 230 | 69.44 |
F5 | 300 | 900 | 0.08 | 60 | 80 | 69.44 |
F6 | 450 | 900 | 0.12 | 60 | 130 | 69.44 |
F7 | 600 | 900 | 0.16 | 60 | 180 | 69.44 |
F8 | 750 | 900 | 0.2 | 60 | 230 | 69.44 |
Specimen | PL [W] | Vs [mm/s] | ds [mm] | Ds [µm] | dspot [µm] | VED [J/mm3] |
---|---|---|---|---|---|---|
F1R | 120 | 950 | 0.08 | 30 | 80 | 52.63 |
F2R | 150 | 800 | 0.12 | 30 | 130 | 52.08 |
F3R | 180 | 720 | 0.16 | 30 | 180 | 52.08 |
F4R | 200 | 650 | 0.2 | 30 | 230 | 51.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichler, F.; Balc, N.; Bremen, S.; Sauren, J. Influence of Adjusted Melt Pool Geometries on Residual Stress in 316L LPBF Processes. Metals 2025, 15, 1010. https://doi.org/10.3390/met15091010
Eichler F, Balc N, Bremen S, Sauren J. Influence of Adjusted Melt Pool Geometries on Residual Stress in 316L LPBF Processes. Metals. 2025; 15(9):1010. https://doi.org/10.3390/met15091010
Chicago/Turabian StyleEichler, Fabian, Nicolae Balc, Sebastian Bremen, and Julius Sauren. 2025. "Influence of Adjusted Melt Pool Geometries on Residual Stress in 316L LPBF Processes" Metals 15, no. 9: 1010. https://doi.org/10.3390/met15091010
APA StyleEichler, F., Balc, N., Bremen, S., & Sauren, J. (2025). Influence of Adjusted Melt Pool Geometries on Residual Stress in 316L LPBF Processes. Metals, 15(9), 1010. https://doi.org/10.3390/met15091010