Hydrometallurgical Treatment of EAF By-Products for Metal Recovery: Opportunities and Challenges
Abstract
1. Introduction
2. Materials and Methods
3. EAF Dust
3.1. General Characterization
3.1.1. Particles
3.1.2. Chemical Composition
3.1.3. Phase Composition
3.2. Leaching
3.2.1. Acid Leaching
3.2.2. Alkaline Leaching
3.2.3. Water Leaching
- EAFD Purification
- 2.
- Pretreatment and Leaching
3.2.4. Leaching with Salts
3.2.5. Bioleaching
3.2.6. Leaching by Waste-Derived Reagents
3.2.7. Solvoleaching
3.3. Leachate Purification and Zinc Recovery
3.4. Commercial Hydrometallurgical Processes
4. EAF Slag
4.1. General Characterization
4.1.1. Particles
4.1.2. Composition
4.2. Recovery of Metals
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EAF | Electric arc furnace |
EAFD | Electric arc furnace dust |
EAFS | Electric arc furnace slag |
C.Z.O. | Crude zinc oxide |
References
- Karbowniczek, M. Electric Arc Furnace Steelmaking; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Hasanbeigi, A. Steel Climate Impact—An International Benchmarking of Energy and CO2 Intensities; Global Efficiency Intelligence: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Word Steel in Figures 2025; World Steel Association: Brussels, Belgium, 2025.
- Corneille, A.; Agarwal, A.; Seguineaud, C.; Ventricelli, V.; Conesa, R. Unlocking Potential in the Global Scrap Steel Market: Opportunities and Challenges. OECD Science, Technology and Industry Policy Papers; No. 170; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Lopez, G.; Farfan, J.; Breyer, C. Trends in the global steel industry: Evolutionary projections and defossilisation pathways through power-to-steel. J. Clean. Prod. 2022, 375, 134182. [Google Scholar] [CrossRef]
- Hu, H.; Yang, L.; Yang, S.; Zou, Y.; Wang, S.; Chen, F.; Guo, Y. Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route. Energy 2024, 302, 131783. [Google Scholar] [CrossRef]
- Remus, R.; Aguado-Monsobet, M.A.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU; EC Joint Research Centre: Seville, Spain, 2013. [Google Scholar]
- Xue, Y.; Liu, X.; Xu, C.; Han, Y. Hydrometallurgical detoxification and recycling of electric arc furnace dust. Int. J. Miner. Metall. Mater. 2023, 30, 2076–2094. [Google Scholar] [CrossRef]
- Kurecki, M.; Meena, N.; Shyrokykh, T.; Korobeinikov, Y.; Örell, T.J.; Voss, Z.; Pretorius, E.; Jones, J.; Sridhar, S. Recycling perspectives of electric arc furnace slag in the United States: A review. Steel Res. Int. 2025, 2300854. [Google Scholar] [CrossRef]
- Kim, J.; Azimi, G. Technospheric mining of niobium and titanium from electric arc furnace slag. Hydrometallurgy 2020, 191, 105203. [Google Scholar] [CrossRef]
- 2014/955/EU: Commission Decision of 18 December 2014 Amending Decision 2000/532/EC on the List of Waste Pursuant to Directive 2008/98/EC of the European Parliament and of the Council. 2014. Available online: https://eur-lex.europa.eu/eli/dec/2014/955/oj/eng (accessed on 4 June 2025).
- Stagemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R. Understanding environmental leachability of electric arc furnace dust. J. Environ. Eng. 2000, 126, 112–120. [Google Scholar] [CrossRef]
- Chung, C.J.; Wu, C.D.; Hwang, B.F.; Wu, C.C.; Huang, P.H.; Ho, C.T.; Hsu, H.T. Effects of ambient PM2.5 and particle-bound metals on the healthy residents living near an electric arc furnace: A community-based study. Sci. Total. Environ. 2020, 728, 138799. [Google Scholar] [CrossRef]
- Salihoglu, G.; Pinarli, V. Steel foundry electric arc furnace dust management: Stabilization by using lime and Portland cement. J. Hazard. Mater. 2008, 153, 1110–1116. [Google Scholar] [CrossRef]
- Nair, A.T.; Mathew, A.; Archana, A.R.; Akbar, M.A. Use of hazardous electric arc furnace dust in the construction industry: A cleaner production approach. J. Clean. Prod. 2022, 377, 134282. [Google Scholar] [CrossRef]
- Lin, X.; Peng, Z.; Yan, J.; Li, Z.; Hwang, J.Y.; Zhang, Y.; Li, G.; Jiang, T. Pyrometallurgical recycling of electric arc furnace dust. J. Clean. Prod. 2017, 149, 1079–1100. [Google Scholar] [CrossRef]
- Antrekowitsch, J.; Steinlechner, S.; Hanke, G.; Brandner, U. Zinc. In Handbook of Recycling, 2nd ed.; Meskers, C., Worell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 371–384. [Google Scholar]
- Yu, S.; Garrabrants, A.C.; DeLapp, R.C.; Hubner, T.; Thorneloe, S.A.; Kosson, D.S. Evaluation of testing approaches for constituent leaching from electric arc furnace (EAF) slags. J. Environ. Manag. 2025, 373, 123892. [Google Scholar] [CrossRef]
- Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023; Publication Office of the European Union: Luxemburg, 2023. [Google Scholar]
- Critical Minerals for India. Report of the Committee on Identification of Critical Minerals, Ministry of Mines of India. 2023. Available online: https://mines.gov.in/admin/download/649d4212cceb01688027666.pdf (accessed on 24 October 2024).
- The Canadian Critical Minerals Strategy. Available online: https://www.canada.ca/en/campaign/critical-minerals-in-canada/canadian-critical-minerals-strategy.html (accessed on 24 June 2025).
- U.S. Geological Survey Releases 2022 List of Critical Minerals. Available online: https://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals (accessed on 24 October 2024).
- Updates to Australia’s Critical Mineral List. Available online: https://www.industry.gov.au/news/updates-australias-critical-minerals-list (accessed on 24 June 2025).
- Keglevich de Buzin, P.J.W.; Heck, N.C.; Vilela, A.C. EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. J. Mater. Res. Technol. 2017, 6, 194–202. [Google Scholar] [CrossRef]
- The World Zinc Factbook 2024; International Lead and Zinc Study Group: Lisbon, Portugal, 2024; Available online: https://www.ilzsg.org/ (accessed on 24 June 2025).
- Forecast Market Value of Selected Critical Materials Worldwide from 2027 to 2030. Statista. Available online: https://www.statista.com/statistics/1361230/forecast-global-market-value-of-critical-materials/ (accessed on 24 June 2025).
- Kaya, M.; Hussaini, S.; Kursunoglu, S. Critical review on secondary zinc residues and their recycling technologies. Hydrometallurgy 2020, 195, 105362. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Cui, K.; Fu, T.; Gao, J.; Hussain, S.; AlGarni, T.S. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust—A review. J. Clean. Prod. 2021, 298, 126788. [Google Scholar] [CrossRef]
- Guézennec, A.G.; Huber, J.C.; Patisson, F.; Sessiecq, P.; Birat, J.P.; Ablitzer, D. Dust formation in electric arc furnace: Birth of the particles. Powd. Technol. 2005, 157, 2–11. [Google Scholar] [CrossRef]
- Trifunović, V.; Milić, S.; Avramović, L.; Jonović, R.; Gardić, V.; Dordievski, S.; Dimitrijević, S. Investigation of hazardous waste: A case study of electric arc furnace dust characterization. Hem. Ind. 2022, 76, 237–249. [Google Scholar] [CrossRef]
- Lanzerstrofer, C.; Brunner, C. Electric arc furnace dust: Characterization of flowability. In Proceedings of the 32nd International Conference on Metallurgy and Materials METAL 2023, Brno, Czech Republic, 17–19 May 2023. [Google Scholar]
- Oustadakis, P.; Tsakiridis, P.E.; Katsiapi, A.; Agatzini-Leonardou, S. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part I: Characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 2010, 179, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Park, D.S.M.; Hwang, Y.; Ha, J.G.; Shin, H.S. Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties. Environ. Eng. Res. 2020, 25, 335–344. [Google Scholar] [CrossRef]
- Laubertova, M.; Havlik, T.; Parilak, L.; Derin, B.; Trpcevska, J. The effects of microvave-assisted leaching on the treatment of electric arc furnace dusts (EAFD). Arch. Metall. Mater. 2020, 65, 321–328. [Google Scholar] [CrossRef]
- Trifunović, V.; Milić, S.; Avramović, L.; Bugarin, M.; Dordievski, S.; Antonijević, M.M.; Radovanović, M.B. Application of a simple pretreatment in the process of acid leaching of electric arc furnace dust. Metals 2024, 14, 426. [Google Scholar] [CrossRef]
- Pickles, C.A.; Marzoughi, O. Thermodynamic investigation of the sulphation rosasting of electric arc furnace dust. Minerals 2019, 9, 18. [Google Scholar]
- Rudnik, E. Recovery of zinc from steelmaking flue dust by hydrometallurgical route. Arch. Metall. Mater. 2020, 65, 601–608. [Google Scholar] [CrossRef]
- Zoraga, M.; Ilhan, S.; Kalpakli, A.O. Leaching kinetics of electric arc furnace dust in nitric acid solutions. Int. J. Chem. Kinet. 2020, 52, 933–942. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, R.; Wang, H.; Liu, W.; Yang, T.; Chen, L. Recovery of zinc from electric arc furnace dust by alkaline pressure leaching using iron as a reductant. J. Cent. South Univ. 2021, 28, 2701–2710. [Google Scholar] [CrossRef]
- Teimouri, S.; Potgieter, J.H.; Lundström, M.; Billing, C.; Wilson, B.P. A new hydrometallurgical process for metal extraction from electric arc furnace dust using ionic liquids. Materials 2022, 15, 8648. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, J.; Teng, W.; Chen, Y.; Liu, W.; Ren, S.; Yang, J.; Liu, Q. One-step extraction of zinc and separation of iron from hazardous electric arc furnace dust via sulphating roasting-water leaching. J. Environ. Chem. Eng. 2023, 11, 11155. [Google Scholar] [CrossRef]
- Gamutan, J.; Koide, S.; Sasaki, Y.; Nagasaka, T. Selective dissolution of leaching zinc from lime treated electric arc furnace dust by alkaline media. J. Environ. Chem. Eng. 2024, 12, 111789. [Google Scholar] [CrossRef]
- Ju, J.; Yang, W.; Long, T.; Deng, S.; Yang, C. High-efficiency separation and recovery of Zn and Fe from EAF dust via ammonium salt roasting-water leaching: Process optimization and mechanistic insights. Process. Saf. Environ. Prot. 2025, 199, 107276. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Altarawneh, S.; Al-Omari, M. Selective dissolution of zinc and lead from electric arc furnace dust via oxidative thermolysis with polyvinyl chloride and water-leaching process. Hydrometallurgy 2022, 212, 105898. [Google Scholar] [CrossRef]
- Havlik, T.; Friedrich, B.; Stopić, S. Pressure leaching of EAF dust with sulphuric acid. World Metall. 2004, 57, 113–120. [Google Scholar]
- Bruckard, W.J.; Davey, K.J.; Rodopoulos, T.; Woodcock, J.T.; Italiano, J. Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts. Int. J. Miner. Proc. 2005, 75, 1–20. [Google Scholar] [CrossRef]
- Chen, W.S.; Shen, Y.H.; Tsai, M.S.; Chang, F.C. Removal of chloride from electric arc furnace dust. J. Hazard. Mater. 2011, 190, 639–644. [Google Scholar] [CrossRef]
- Santos, E.B.C.; Muniz, D.D.; Barbosa, N.P.; Correira, E.A.S.; Alves, L.D.M.; de Melo, M.B.F.V. Brazilian steel waste: Electrical arc furnace dust chemical, thermal and morphological characterization. J. Mater. Res. Technol. 2021, 14, 2775–2781. [Google Scholar] [CrossRef]
- Sofilić, T.; Rastovčan-Mioč, A.; Cerjan-Stefanović, S.; Novosel-Radović, V.; Jenko, M. Characterization of steel mill electric-arc furnace dust. J. Hazard. Mater. 2004, 109, 59–70. [Google Scholar] [CrossRef]
- Lutandula, M.S.; Kashala, G.N. Zinc oxide production through reprocessing of the electric arc furnace flue dusts. J. Environ. Chem. Eng. 2013, 1, 600–603. [Google Scholar] [CrossRef]
- Shawabkeh, R.A. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy 2010, 104, 61–65. [Google Scholar] [CrossRef]
- Palimąka, P.; Pietrzyk, S.; Stępień, M.; Ciećko, K.; Nejman, I. Zinc recovery from steelmaking dust by hydrometallurgical methods. Metals 2018, 8, 547. [Google Scholar] [CrossRef]
- Kukurugya, F.; Vindt, T.; Havlik, T. Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: Thermodynamic and kinetic aspects. Hydrometallurgy 2015, 154, 30–32. [Google Scholar] [CrossRef]
- Lanzerstrofer, C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J. Clean. Prod. 2018, 174, 1–6. [Google Scholar] [CrossRef]
- Sofilić, T.; Novosel-Radović, V.; Cerjan-Stefanović, S.; Rastovčan-Mioč, A. The mineralogical composition of dust from an electric arc furnace. Mater. Tehnol. 2005, 39, 149–154. [Google Scholar]
- Simonyan, L.M.; Alpatova, A.A.; Demidova, N.V. The EAF dust chemical and phase composition research techniques. J. Mater. Res. Technol. 2019, 8, 1601–1607. [Google Scholar] [CrossRef]
- Orhan, G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 2005, 78, 236–245. [Google Scholar] [CrossRef]
- Langová, Š.; Leško, J.; Matýsek, D. Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 2009, 95, 179–182. [Google Scholar] [CrossRef]
- Leclerc, N.; Meux, E.; Lecuire, J.M. Hydrometallurgical extraction from zinc ferrites. Hydrometallurgy 2003, 70, 175–183. [Google Scholar] [CrossRef]
- Suetens, T.; Guo, M.; Van Acker, K.; Blanpain, B. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system. J. Hazard. Mater. 2015, 287, 180–187. [Google Scholar] [CrossRef]
- Kul, M.; Oskay, K.O.; Simsir, M.; Sübütay, H.; Kirgezen, H. Optimization of selective leaching of Zn from electric arc furnace steelmaking dust using response surface methodology. Trans. Nonferrous. Met. Soc. China 2015, 25, 2753–2762. [Google Scholar] [CrossRef]
- Langová, Š.; Riplová, J.; Vallová, S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy 2007, 87, 157–162. [Google Scholar] [CrossRef]
- Langová, Š.; Matýsek, D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy 2010, 10, 171–173. [Google Scholar] [CrossRef]
- Teo, Y.Y.; Lee, H.S.; Low, Y.S.; Choong, S.W.; Low, K.O. Hydrometallurgical extraction of zinc and iron from electric arc furnace dust (EAFD) using hydrochloric acid. J. Phys. Sci. 2018, 29, 49–54. [Google Scholar] [CrossRef]
- Halli, P.; Hamuyuni, J.; Revitzer, H.; Lindström, M. Selection of leaching media for metal dissolution from electric arc furnace dust. J. Clean. Prod. 2017, 164, 265–276. [Google Scholar] [CrossRef]
- Sajal, W.R.; Ahmad, S.; Gulshan, F. Optimisation of hybrid process to recover zinc from electric furnace dust using design of experiment approach. Can. Metall. Quart. 2025, 64, 664–679. [Google Scholar] [CrossRef]
- Siame, M.C.; Kaoma, J.; Hlabangana, N.; Danha, G. An attainable region approach for the recovery of iron and zinc from electric arc furnace dust. S. Afr. J. Chem. Eng. 2019, 27, 35–42. [Google Scholar] [CrossRef]
- Chairaksa-Fujimoto, R.; Maruyama, K.; Miki, T.; Nagasaka, T. The selective alkaline leaching of zinc oxide from electric arc furnace dust pre-treated with calcium oxide. Hydrometallurgy 2016, 159, 120–125. [Google Scholar] [CrossRef]
- Gargul, K.; Handzlik, P.; Palimąka, P.; Pawlik, A. The application of citric acid solutions for selective removal of zinc from steelmaking dust. J. Min. Metall. Sec. B-Metall. 2021, 57, 163–173. [Google Scholar] [CrossRef]
- Machado, J.G.M.S.; Brehm, F.A.; Moraes, C.A.M.; dos Santos, C.A.; Vilela, A.C.F.; da Cunha, J.B.M. Chemical, physical, structural and morphological characterization of the electric arc furnace dust. J. Hazard. Mater. 2006, 136, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Saba, A.E.; Elsherief, A.E. Continous electrowinning of zinc. Hydrometallurgy 2000, 54, 91–106. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Y.; Kang, Y.; Gao, J.; Guo, Z. Promoted acid leaching of Zn from hazardous zinc-containing metallurgical dusts: Focus on transformation of Zn phases in selective reduction roasting. Process. Saf. Environ. Prot. 2022, 163, 353–361. [Google Scholar] [CrossRef]
- Halli, P.; Hamuyuni, J.; Leikola, M.; Lindström, M. Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Min. Eng. 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Jarupisitthorn, C.; Pimtong, T.; Lothongkum, G. Investigation kinetics of zinc leaching from electric arc furnace dust by sodium hydroxide. Mater. Chem. Phys. 2002, 77, 531–535. [Google Scholar] [CrossRef]
- Dutra, A.J.B.; Paiva, P.R.P.; Tavares, L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Min. Eng. 2006, 19, 478–485. [Google Scholar] [CrossRef]
- Youcai, Z.; Stanforth, R. Integrated hydrometallurgical process for production of zinc from electric furnace dust in alkaline medium. J. Hazard. Mater. 2000, 80, 223–240. [Google Scholar] [CrossRef]
- Zhang, D.; Ling, H.; Yang, T.; Liu, W.; Chen, L. Selective leaching of zinc from electric arc furnace dust by a hydrothermal reduction method in a sodium hydroxide system. J. Clean. Prod. 2019, 224, 536–544. [Google Scholar] [CrossRef]
- Xia, D.K.; Pickles, C.A. Microwave caustic leaching of electric arc furnace dust. Min. Eng. 2000, 13, 79–94. [Google Scholar] [CrossRef]
- Bayoumi, R.A.; Abdelmonem, N.M.; Soliman, M.A.; Ismail, I.M.; Refaat, A.A. Hybrid hydro-pyrometallurgical process for Zn recovery from electric arc furnace dust. J. Phys. Conf. Ser. 2022, 2305, 012009. [Google Scholar] [CrossRef]
- Lis, T.; Nowacki, K. Determination of physical and chemical properties of electric arc furnace dusts for the purposed of their utilization. Steel Res. 2012, 83, 842–851. [Google Scholar] [CrossRef]
- Yokoyama, S.; Sasaki, T.; Sasano, J.; Izaki, M. Elution of zinc in dust discharged from electric arc furnace in carbonic acid solution. J. Phys. Conf. Ser. 2012, 352, 012050. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Altawneh, S.; Al-Omari, M.; Altarawneh, M.; Kingman, S.; Dodds, C. Leeching behavior of zinc and lead from electric arc furnace dust—Poly(vinyl) chloride residues after oxidative thermal treatment. J. Clean. Prod. 2021, 328, 129622. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Orabi, Y.; Al-Asheh, S. Comparative study on the pyrolysis and leachability of washed/unwashed electric furnace dust-PVC mixtures and their residues. J. Environ. Chem. Eng. 2021, 9, 105410. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Aljarrah, M.; Rummanah, F.; Abdel-Latif, K.; Kingman, S. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J. Anal. Appl. Pyrol. 2017, 125, 50–60. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Kingman, S.; Hamilton, I. Microwave treatment of electric arc furnace dust with tetrabromobisphenol A: Dielectric characterization and pyrolysis-leaching. J. Anal. Appl. Pyrol. 2017, 128, 168–175. [Google Scholar] [CrossRef]
- Nicol, M.; Akilan, C.; Tjandrawan, V.; Gonzalez, J.A. The effects of halides in the electrowinning of zinc. I. Oxidation of chloride on lead-silver anodes. Hydrometallurgy 2017, 173, 125–133. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Zhang, L. Removal of chlorine from zinc sulfate solution: A review. Environ. Sci. Poll. Res. Int. 2022, 42, 62839–62850. [Google Scholar] [CrossRef]
- Parsonage, D.; Singh, P.; Nikoloski, A.N. Adverse effect of fluoride on hydrometallurgical operations. Min. Process. Extract. Metall. Rev. 2014, 35, 44–65. [Google Scholar] [CrossRef]
- McElroy, R.O.; McClaren, M. Processing of electric furnace dust via chloride hydrometallurgy. In Hydrometallurgy’94; Springer: Dordrecht, The Netherlands, 1994; pp. 993–1010. [Google Scholar]
- Harris, G.B.; White, C.W.; Hofbauer, T.; Dry, M.J. Treatment of electric arc furnace dust via a chloride-processing route. In Proceedings of the 60th Conference of Metallurgists COM 2021, MetSoc, Virtual Online Conference, 17–19 August 2021. [Google Scholar]
- Havlik, T.; Maruskinova, G.; Miskufova, A. Determination of ZnO amount in electric arc furnace dust and temperature dependence of leaching in ammonium carbonate by using of X-ray diffraction. Arch. Metall. Mater. 2018, 63, 653–658. [Google Scholar] [CrossRef]
- Ruiz, O.; Clemente, C.; Alonso, M.; Alugacil, F.J. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J. Hazard. Mater. 2007, 141, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Chairaksa-Fujimoto, R.; Maruyama, K.; Nagasaka, T. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution. J. Hazard. Mater. 2016, 146, 90–96. [Google Scholar] [CrossRef]
- Leclerc, N.; Meux, E.; Lecuire, J.M. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitriloacetate anion and hexahydrated ferric chloride. J. Hazard. Mater. 2002, 91, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jia, N.; Liu, W.; Zhang, M.; Guo, M. Efficient and selective hydrothermal extraction of zinc from zinc-containing electric arc furnace dust using a novel bifunctional agent. Hydrometallurgy 2016, 166, 107–112. [Google Scholar] [CrossRef]
- Harvey, T.G. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel process. Min. Process. Extract. Metall. Rev. 2006, 27, 231–279. [Google Scholar] [CrossRef]
- Kinnunen, P.; Miettinen, H.; Frilund, C.; Simell, P. Integration of H2S gas cleaning and bioleaching for zinc recovery from electric arc furnace dust. Hydrometallurgy 2025, 236, 106505. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Mousavi, S.M.; Beolchini, F. A practical green methodology for metal extraction from electric arc furnace dust through Yarrowia Lipolytica biolixviant. Min. Eng. 2024, 217, 108948. [Google Scholar] [CrossRef]
- Yang, H.; Hu, K.; Feng, J.; Ning, P.; Wang, F.; Cui, S. Resource utilization of electric arc furnace dust: Efficient wet desulfurization and valuable metal leaching kinetics investigation. J. Environ. Manag. 2025, 375, 124419. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Solvometallurgy: An emerging branch of extractive metallurgy. J. Sustain. Metall. 2017, 3, 570–600. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic liquids and deep–eutectic solvents in extractive metallurgy: Mismatch between academic research and industrial applicability. J. Sustain. Metall. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Bakkar, A. Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning. J. Hazard. Mater. 2014, 280, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Tsakiridis, P.E.; Oustadakis, P.; Katsiapi, A.; Agatzini-Leonardu, S. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. J. Hazard. Mater. 2010, 179, 8–14. [Google Scholar] [CrossRef]
- Xanthopoulos, P.; Agatzini-Leonardu, S.; Oustadakis, P.; Tsakiridis, P.E. Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation. J. Environ. Chem. Eng. 2017, 5, 3550–3559. [Google Scholar] [CrossRef]
- Halli, P.; Agarwal, V.; Partinen, J.; Lundström, M. Recovery Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Sep. Pur. Technol. 2020, 236, 116264. [Google Scholar] [CrossRef]
- Carranza, F.; Romero, R.; Mazuelos, A.; Iglesias, N. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process. J. Environ. Manag. 2016, 165, 175–183. [Google Scholar] [CrossRef]
- Hazaveh, P.K.; Karimi, S.; Raschi, F.; Sheibani, S. Purification of the leach solution of recycling from the hazardous electric arc furnace dust through an as-bearing jarosite. Ecotox. Environ. Saf. 2020, 202, 110893. [Google Scholar]
- Darezereshki, E.; Vakylabad, A.B.; Koohestani, B. A hydrometallurgical approach to produce nano-ZnO from electrical arc furnace dusts. Min. Metall. Explor. 2021, 38, 1525–1535. [Google Scholar] [CrossRef]
- Xia, D. Recovery of Zinc from Zinc Ferrite Ane Electric Arc Furnace Dust. Ph.D. Thesis, Queens University of Kingston, Kingston, ON, Canada, 1997. [Google Scholar]
- Maccagoni, M.G. INDUTEC®/ENZINEX® integrate process on secondary zinc-bearing materials. J. Sustain. Metall. 2016, 2, 133–140. [Google Scholar] [CrossRef]
- Frias, C.; Diaz, G.; Martin, D.; Sanchez, F.; Onoberhie, C. Highly Efficient and Low Cost Zinc Electrolyte Purification Using ZINCEXTM Solvent Extraction. Available online: https://ddtp.tecnicasreunidas.es/downloads/ (accessed on 18 July 2025).
- Modified Zincex ProcessTM by Técnicas Reunidas. Available online: https://ddtp.tecnicasreunidas.es/wp-content/uploads/2016/11/P-ZINCEX-technology-information-II.pdf (accessed on 18 July 2025).
- Diaz, G.; Martin, D. Modified Zincex Process: The clean, safe and profitable solution to the zinc secondaries treatment. Res. Conserv. Rec. 1994, 10, 43–57. [Google Scholar] [CrossRef]
- Cole, P.M.; Sole, K.C. Zinc solvent extraction in the process industries. Min. Process. Extract. Metall. Rev. 2003, 24, 91–137. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Fernandez, A.M.; Torres, V.M. Hydrometallurgical processes for the recovery of metals from steel industry by-products: A critical review. J. Sustain. Metall. 2020, 6, 505–540. [Google Scholar] [CrossRef]
- Teo, P.T.; Zakaria, S.K.; Salleh, S.Z.; Taib, M.A.A.; Sharif, N.M.; Seman, A.A.; Mohamed, J.J.; Yusoff, M.; Yusoff, A.H.; Mohamad, M.; et al. Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: A review. Metals 2020, 10, 1347. [Google Scholar] [CrossRef]
- Terrones-Saeta, J.M.; Suárez-Macías, J.; Moreno-López, E.R.; Corpas-Iglesias, F.A. Determination of the chemical, physical and mechanical characteristics of electric arc furnace slags and environmental evaluation of the process for their utilization as an aggregate in bituminous mixtures. Materials 2021, 14, 782. [Google Scholar] [CrossRef]
- Kassim, D.; Lamaa, G.; Silva, R.V.; de Brito, J. Performance enhancement of alkali-activated electric arc furnace slag mortars through an accelerated CO2 curing process. Appl. Sci. 2022, 12, 1662. [Google Scholar] [CrossRef]
- Neuhold, S.; van Zomeren, A.; Dijkstra, J.J.; van der Sloot, H.A.; Drissen, P.; Algermissen, D.; Mudersbach, D.; Schüler, S.; Griessacher, T.; Raith, J.G.; et al. Investigation of possible leaching control meachanisms for chromium and vanadium in electric furnace (EAF) slags using combined experimental and modeling approaches. Minerals 2019, 9, 525. [Google Scholar] [CrossRef]
- Kishore, K.; Sheikh, M.N.; Hadi, M.N.S. A critical analysis of electric arc furnace (EAF) slag for sustainable geopolymer concrete production. Mater. Today Sustain. 2025, 29, 101064. [Google Scholar] [CrossRef]
- Samanta, N.S.; Das, P.P.; Dhara, S.; Purkait, M.K. An overview of precious metal recovery from steel industry slag: Recovery strategy and utilization. Ind. Eng. Chem. Res. 2023, 62, 9006–9031. [Google Scholar] [CrossRef]
- Teo, P.T.; Abu Seman, A.; Basu, A.; Sharif, N.M. Chemical, thermal and phase analysis of Malaysia’s electric arc furnace (EAF) slag waste. Mater. Sci. Forum 2016, 840, 399–403. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of microstructure on the leaching behavior of electric arc furnace (EAF) carbon steel slag. Proc. Saf. Environ. Protect. 2016, 102, 810–821. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Zeng, Y.N.; Li, J.G.; Wang, Y.J. Selective extraction of chromium from EAF stainless steel slag by pressurized oxidation in a NaOH solution. Mater. Trans. 2020, 61, 2030–2039. [Google Scholar] [CrossRef]
- Su, T.; Bian, R.; Chen, Y.; Zhu, S.; Huo, Y.; Liu, J. Improvement of a hydrometallurgical process for recovering Mn from electric-arc furnace slag. Min. Eng. 2020, 159, 103344. [Google Scholar] [CrossRef]
- Kim, J.; Azimi, G. Valorization of electric arc furnace slag via carbothermic reduction followed by acid baking—Water leaching. Res. Conserv. Rec. 2021, 173, 105710. [Google Scholar] [CrossRef]
- Sanda, O.; Tinubu, A.C.; Taiwo, E.A. Recovery of iron from EAF smelter slags via hydrochloric acid leaching and solvent extraction using trioctyl phosphine oxide. Sep. Sci. Technol. 2021, 56, 1026–1034. [Google Scholar] [CrossRef]
- Menad, N.; Kana, N.; Kanari, N.; Pereira, F.; Seron, A. Process for enhancing the valuable metal recovery from „electric arc furnace” (EAF) slags. Waste Biom. Valor. 2021, 12, 5187–5200. [Google Scholar] [CrossRef]
- Akbari, M.; Daneshmand, S.; Vini, M.H.; Azimy, H. Effect of roasting process on the V (anti-tumor agent) recovery from the slag of the electric arc furnace (EAF). Heliyon 2024, 10, e31906. [Google Scholar] [CrossRef]
- Menad, N.E.; Seron, A.; Bensamdi, S. Innovative process for strategic metal recovery from electric arc furnace slag by alkaline leaching. Metals 2024, 14, 1364. [Google Scholar] [CrossRef]
- Kokko, M.; Manninen, M.; Hu, T.; Lassi, U.; Vielma, T.; Pesonen, J. Hydrometallurgical recovery of vanadium and calcium from electric arc furnace slag in hydrogen based steelmaking. Min. Eng. 2024, 217, 108966. [Google Scholar] [CrossRef]
- Kurtulus, R.; Khoei, M.A.; Cantaluppi, M.; Ylieniemi, J. Effects of combined alkalinity and ultrasonication on element release and structural alteration in EAF slag. Min. Eng. 2025, 222, 109154. [Google Scholar] [CrossRef]
- Zulkifili, F.S.; Maarof, H.I.; Nasuha, N.; Puasa, S.W. Leaching of electric arc furnace slag for selective recovery of iron: Effect of temperature, H2SO4/HCl acid, and oxidant concentration. Pertanika J. Sci. Technol. 2022, 30, 2023–2032. [Google Scholar] [CrossRef]
- Tong, Z.; Ma, G.; Zhang, X.; Cai, Y. Microwave-supported leaching of electric arc furnace (EAF) slag by ammonium salts. Minerals 2017, 7, 119. [Google Scholar] [CrossRef]
- Hocheng, H.; Su, C.; Jadhav, U.U. Bioleaching of metals from steel slag by Acidithiobactillus thioxidans culture supernatant. Chemosphere 2014, 117, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Azimi, G. Selective precipitation of titanium, magnesium, and aluminum from the steelmaking slag leach liquor. Res. Conserv. Rec. 2022, 180, 106177. [Google Scholar] [CrossRef]
- Yildirim, I.Z.; Prezzi, M. Chemical, mineralogical, and morphological properties of steel slag. Adv. Civ. Eng. 2011, 2011, 463638. [Google Scholar] [CrossRef]
Country | Size Range, μm | Dominant Particle Fraction | Ref. |
---|---|---|---|
Australia | 0.13–300 * | d80 < 2 μm | [46] |
Brazil | 0.1–15 * | d80 < 6.4 μm | [48] |
Croatia | (<50)–(>125) * | 100–125 μm | [49] |
Finland | 0.01–1000 * | d90 < 100 μm | [40] |
Greece | 0.1–500 | d90 < 100 μm | [32] |
Slovakia | 0.1–55 | d99 < 50 μm | [34] |
South Korea | 0.5–500 * | d50 < 3.1–16.6 μm | [33] |
Taiwan | 0.14–70 | d50 < 0.7 μm | [47] |
Turkey | 1–500 | d90 < 189 μm | [38] |
Country | Zn | Fe | Ca | Pb | Cr | Mn | Si | Cl | Ref. |
---|---|---|---|---|---|---|---|---|---|
Australia | 23.1 | 27.1 | 6.1 | 1.8 | 0.1 | 2.0 | 1.5 | 2.1 | [46] |
Brazil | 9.2 | 49.0 | 3.3 | - | 2.9 | - | - | - | [70] |
China | 9.0 | 70.4 | 5.7 | 0.1 | 0.1 | 0.2 | 0.7 | - | [41] |
11.4 | 40.0 | 4.0 | 0.1 | - | 1.9 | 0.8 | 0.3 | [43] | |
31.4 | 27.6 | - | 0.2 | - | 0.9 | 10.1 | - | [39] | |
Congo | 70.7 | 0.8 | - | 9.1 | - | - | 1.6 | - | [50] |
Croatia | 3.7–8.1 | 41.0–48.6 | 4.0–5.0 | 1.0–1.9 | 0.2–0.3 | 5.0–6.0 | 1.8–2.2 | - | [49] |
Finland | 33.2 | 17.9 | 3.6 | 1.6 | 0.2 | 2.5 | 0.8 | - | [40] |
Japan | 16.1 | 23.2 | 2.9 | - | - | - | - | - | [42] |
24.2 | 34.4 | 2.2 | 1.8 | - | - | - | 4.7 | [68] | |
Jordan | 29.1 | 24.0 | 3.2 | 3.6 | 0.1 | 4.1 | 1.6 | 1.6 | [51] |
31.5 | 19.8 | 3.5 | 3.5 | 0.2 | 1.6 | 2.5 | - | [44] | |
Poland | 25.7 | 33.6 | 3.1 | 1.6 | 0.2 | 2.1 | 1.5 | 1.0 | [69] |
42.7 | 27.0 | 1.3 | 3.2 | 0.4 | 3.0 | 1.7 | 0.5 | [37] | |
Serbia | 32.4 | 28.3 | 3.0 | 1.1 | 0.4 | 2.3 | - | 2.5 | [35] |
Slovakia | 17.0 | 27.2 | 4.4 | 1.3 | 0.8 | 1.0 | 3.2 | - | [34] |
20.9 | 27.8 | 4.3 | 2.7 | 0.8 | 3.2 | 2.1 | 0.9 | [45] | |
South Korea | 13.3–26.1 | 12.5–28.8 | 2.2–10.8 | 0.3–1.8 | - | - | - | - | [33] |
Taiwan | 30.0 | 21.3 | 7.2 | 3.2 | 0.1 | 1.6 | 3.3 | 7.0 | [47] |
Phase Content, wt% | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ZnO | Zn5(OH)8Cl2·H2O | ZnFe2O4 | Fe3O4 | Fe2O3 | FeO | FeCr2O4 | Ca0.15Fe2.85O4 | SiO2 | C | Fluorosilicates | |
36 | 11 | 20 | 33 | - | - | - | - | - | - | - | [35] 1 |
21 | - | 10 | - | - | - | - | - | - | - | - | [39] 1 |
4 | - | 37 | 40 | 3 | 5 | - | - | - | 3 | 6 | [62] 2 |
10 | - | 65 | 25 | - | - | - | - | - | - | - | [66] 1 |
20 | - | 35 | - | 28 | - | - | - | 9 | - | - | [67] 1 |
2 | - | 29 | 14 | - | - | 6 | 35 | - | - | - | [70] 3 |
24 | - | 47 | 16 | 6 | - | - | 1 | - | - | - | [46] 1 |
Zn/Fe Contents in EAFD, wt% | Leaching Conditions | Leaching Efficiency, % | Ref. | |
---|---|---|---|---|
Zn | Fe | |||
Atmospheric Leaching | ||||
27/27 | 1–2 M H2SO4, 25 °C, L/S 5 or 30, ~1 h | 70–79 | 1–4 | [61] |
20/17 | 4–6 M H2SO4, 40–60 °C, L/S 5–10, 1.5 h | 72–80 | 31–39 | [32] |
42/27 | 2 M H2SO4, 20–80 °C, L/S 5–20, 2 h | 40–60 | - | [37] |
26/21 | 2 M H2SO4, 20 °C, L/S 3, 0.5 h | 99 | 10 | [33] |
8/45 | 3 M H2SO4, 80 °C, L/S 5, 6 h | 99 | 90 | [62] |
17/27 | 1 M H2SO4, 80 °C, L/S 50, 1.5 h | 87 | - | [53] |
32/28 | 1.5 M H2SO4, 20 °C, L/S 20, 0.5 h 1 | 68 | 30 | [35] |
51/16 | 0.8 M H2SO4, 20 °C, L/S 10, 2 h 2 | 94 | 60 | [72] |
26/26 | 1–5 M HCl, 70 °C, L/S 30, 0.25 h | 50–60 | 35–55 | [63] |
26/34 | 0.5 M citric acid, 50 °C, L/S 10, 1 h | 61 | 4 | [69] |
33/18 | 0.8 M citric acid, 40 °C, L/S 10, 2 h, O2 2 L/min 3 | 100 | 8 | [73] |
Pressure Leaching | ||||
21/28 | 0.4 M H2SO4, 100–250 °C, 1–41 bar, L/S 10–30, 1 h | 40–77 | 1–23 | [45] |
Microwave Leaching | ||||
8/45 | 0.3 M H2SO4, H2O2, 260 °C, 600W, L/S 50, 1.5 h | 99 | 3 | [62] |
Zn/Fe Contents in EAFD, wt% | Pretreatment Conditions | Leaching Conditions | Efficiency, % | Ref. |
---|---|---|---|---|
Atmospheric Leaching | ||||
33/22 | - | 6 M NaOH, 80 °C, L/S 40, 2 h | 88 | [52] |
33/26 | - | 10 M NaOH, 95 °C, L/S 7, 2 h | 85 | [57] |
44/25 | - | 8 M NaOH, 80 °C, L/S 10, 2 h | 70 | [67] |
13/30 | - | 1.5–4 M NaOH, 95 °C, L/S 500, 0.5 h | 77 | [74] |
12/37 | Microwave oven: 1 kW, 2.5 GHz, 600–700 °C, 2 min | 6 M NaOH, 90 °C, 3 h | 60 | [75] |
24/34 | Roasting with CaO: Ca/Fe 1.3, 1100 °C, 5 h | 2 M NaOH, 70 °C, L/S 300, 2 h | 99 | [42,68] |
16/23 | 2 M KOH, 70 °C, L/S 300, 2 h | 94 | [42] | |
2 M LiOH, 70 °C, L/S 300, 2 h | 74 | |||
27/33 | Fusion with NaOH: NaOH/EAFD 4, 350 °C, 1 h | 6 M NaOH, 70 °C, L/S 300, 2 h | 83 | [66] |
25/32 | I. Water hydrolysis II. NaOH fusion: 350 °C, 1 h | 5 M NaOH, 40 °C, L/S 60, 1 h | 95 | [76] |
18/22 | Roasting with cement dust: cement/EAFD 2, 1000 °C, 1 h | 2 M NaOH,100 °C, L/S 20, 6 h | 82 | [79] |
PressureLeaching | ||||
12/37 | - | 6 M NaOH, 120–200 °C, 2–16 atm, 2 h | 50 | [75] |
Microwave Leaching | ||||
17/27 | - | 6 M NaOH, 720 W, 2.5 GHz, L/S 20, 1 h | 80 | [34] |
19/29 | - | 8 M NaOH, 900 W, 2.5 GHz, 360 °C, L/S 17, 5 min | 80 | [78] |
Two-step Leaching | ||||
31/28 | - | I. Atmospheric leaching: 6 M NaOH, 70 °C, L/S 20, 2 h, II. Pressure leaching: 6 M NaOH, Fe/EAFD 5, 260 °C, L/S 50, 2 h | 89 | [39] |
31/28 | - | I. Atmospheric leaching: 6 M NaOH, 50 °C, L/S 20, 2 h II. Hydrothermal leaching: 6 M NaOH, 20 g/L starch, 260 °C, L/S 50, 2 h | 90 | [77] |
Zn/Fe Contents in EAFD, wt% | Pretreatment Conditions | Leaching Conditions | Efficiency, % | Ref. |
---|---|---|---|---|
26/17 | PVC 1/EAFD 2, air, 300 °C, 0.5 h | H2O, 80 °C, L/S 50, 1 h | ~100 | [82] |
31/20 | PVC/EAFD, air, 300 °C, 0.5 h | H2O, 50 °C, L/S 50, 1 h | ~100 | [44] |
26/18 | TBBPA 2/EAFD 3, N2, 350 °C, 0.5 h | H2O, 20 °C, L/S 3, 0.5 h | 81 | [84] |
H2O, H2O2, 25 °C, L/S 3, 0.5 h | 73 | |||
TBBPA/EAFD 1, 3 kW, 2.25 GHz, 350 °C, <2 min. | H2O, Tboil, 0.25 h | 50 | [85] | |
9/40 | NH4HSO4/EAFD 0.75, 650 °C, 3 h | H2O, 20 °C, 1 h | 91 | [41] |
11/40 | (NH4)2SO4/EAFD 1.1, 650 °C, 1.5 h | H2O, 70 °C, L/S 10, 1 h | 98 | [43] |
Zn/Fe Contents in EAFD, wt% | Pretreatment Conditions | Leaching Conditions | Efficiency, % | Ref. |
---|---|---|---|---|
19/30 | - | 2 M (NH4)2CO3, 60 °C, L/S 5, 1 h | 65 | [91] |
29/25 | H2O, 20 °C, L/S 3, 1 h | 2 M (NH4)2CO3, pH 10.5, 60 °C, L/S 20, 2 h | 49 | [92] |
24/31 | - | 2 M NH4Cl, 70 °C, L/S 300, 2 h | 50 | [93] |
CaO roasting, 1100 °C, 5 h | 98 | |||
28/22 | - II. FeCl3·6H2O, 150 °C, 8 h | I. 1 M nitriloacetic acid, 20 °C, 1 h III. H2O | ~100 | [94] |
8/37 | H2O | NH4Fe(SO4)2·12 H2O/EAFD 7, 220 °C, 10 h | 95 | [95] |
Zn/Fe Contents in EAFD, wt% | Leaching Conditions | Leaching Efficiency, % | Ref. | |
---|---|---|---|---|
Zn | Other | |||
32/18 | 30 vol% [Bmim+HSO4−], 20 g/L Fe2(SO4)3, 85 °C, L/S 20, 4 h | 93 * | Fe: 80 * | [40] |
20/11 | choline chloride-urea (1:2), 60 °C, L/S 20, 48 h | 60 | Pb: 39 | [101] |
Leachant | Concentration, mg/L | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
Zn | Fe | Pb | Mn | Cr | Cu | Cd | ||
H2SO4 | 20,000–40,000 | 10,000–20,000 | - | 800–3500 | - | - | - | [37] |
29,800–23,500 | - | 6–8 | - | - | - | - | [50] | |
14,000 | 13,000 | - | 1900 | - | 300 | - | [103] | |
7400 | 15,900 | 3 | 1140 | 65 | 15 | 8 | [104] | |
Citric acid * | 20,000 | 630 | 1029 | 504 | 18 | - | - | [105] |
NaOH | 15,200 | 20 | 420 | 12 | 40 | - | 12 | [52] |
28,050 | 25 | 2740 | - | 40 | 43 | 8 | [57] | |
H2O * | 45,600 | 60 | 3600 | - | - | 60 | 40 | [76] |
(NH4)2CO3 | 7200 | - | 340 | - | - | 70 | 30 | [92] |
Country | Fe | Ca | Mg | Al | Cr | Mn | Si | V | Ti | Nb | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Austria | 21–30 | 15–28 | 3–4 | 3–4 | 0.9–1.2 | 3–6 | 5–8 | 0.1 | - | - | [119] |
China | 19 | 38 | 0.2 | 0.5 | - | 7 | 8 | - | - | - | [125] |
Finland | 31 | 16 | 5.5 | 3 | - | 0.5 | 5.5 | 0.9 | - | - | [131] |
Italy | 24 | 17 | 5.5 | 2.5 | 2 | 5.5 | - | - | 0.2 | 0.05 | [10] |
Nigeria | 33 | 1.5 | 22 | 3.6 | 0.4 | 2.8 | - | - | 0.07 | - | [127] |
USA | 22 | 22 | 6 | 2.6 | 0.8 | 3 | 10 | 0.08 | 0.2 | - | [18] |
No data | 23 | 15 | 12 | 2.5 | 2 | 0.7 | - | - | 0.2 | 0.2 | [126] |
Metal Content in EAFS, wt% | Pretreatment Conditions | Leaching Conditions | Efficiency, % | Ref. |
---|---|---|---|---|
6.4 Cr2O3 | - | 14 M NaOH, 1.6 MPa O2, 170 °C, L/S 5, 4 h | 60 | [124] |
3.4 Cr | I. Grinding with NaOH/Na2CO3 mixture, 1 h II. Roasting: 800 °C, 2 h | H2O, 25 °C, L/S 10, 24 h | 97.5 | [128] |
0.15 V | I. Grinding with NaOH/Na2CO3 mixture, 3 h II. Roasting: 600 °C, 2 h | 62.5 | ||
0.015 Mo | I. Grinding with KOH, 1 h II. Roasting: 600 °C, 2 h | 95.8 | ||
3.4 Cr | Microvave treatment: KOH or KOH + K2CO3, 900 °C, 1.4 kW, 0.25 h | H2O, 25 °C, L/S 2.5, 24 h | 100 | [130] |
0.15 V | Microvave treatment: Na2CO3 or K2CO3, 500 °C, 1 kW, 0.25 h | 57 | ||
0.9 V | Ca leaching in HNO3 + NH4NO3, 30 °C, L/S 5 | 1.6 M Na2CO3 + 0.05 M NaOH, 35 °C, L/S 25, 1 h | 26 | [131] |
4.1 M Na2CO3, 60 °C, L/S 5, 1 h | 39 | |||
0.19 Ti | Acid baking: 96% H2SO4, H2SO4/EAFS 3, 400 °C, 2 h | H2O, 25 °C, L/S 5, 2 h | 93.4 | [10] |
0.05 Nb | 98.7 | |||
0.15 Ti * | I. Carbothermic reduction: C/EAFS 0.12, 1600 °C, 1.5 h II. Acid baking: 96% H2SO4, H2SO4/EAFS-slag 2, 185 °C, 1.1 h | H2O, 25 °C, L/S 5.8, 2 h | 86 | [126] |
6.4 Mg * | 100 | |||
2.5 Al * | 100 | |||
33.4 Fe | - | 4 M HCl, 90 °C, L/S 20, 1 h | 45 | [127] |
19 Mg | Water washing, 30 °C, 24 h | At. thiooxidans, 24 days (in 4 cycles) | 75 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudnik, E. Hydrometallurgical Treatment of EAF By-Products for Metal Recovery: Opportunities and Challenges. Metals 2025, 15, 914. https://doi.org/10.3390/met15080914
Rudnik E. Hydrometallurgical Treatment of EAF By-Products for Metal Recovery: Opportunities and Challenges. Metals. 2025; 15(8):914. https://doi.org/10.3390/met15080914
Chicago/Turabian StyleRudnik, Ewa. 2025. "Hydrometallurgical Treatment of EAF By-Products for Metal Recovery: Opportunities and Challenges" Metals 15, no. 8: 914. https://doi.org/10.3390/met15080914
APA StyleRudnik, E. (2025). Hydrometallurgical Treatment of EAF By-Products for Metal Recovery: Opportunities and Challenges. Metals, 15(8), 914. https://doi.org/10.3390/met15080914