Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries
Abstract
1. Introduction
2. Experiments
2.1. Preparation of Precursors
2.2. Synthesis of Cathode Materials
2.3. Characterization of Materials
2.4. Electrochemical Performance
3. Results and Discussions
3.1. Structure and Morphology
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ni, L.; Chen, H.; Gao, J.; Mei, Y.; Wang, H.; Zhu, F.; Ji, X. Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode. ACS Nano 2023, 17, 12759–12773. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028. [Google Scholar] [CrossRef]
- Cui, L.F.; Yang, Y.; Hsu, C.M.; Cui, Y. Carbon−silicon core−shell nanowires as high capacity electrode for lithiumion batteries. Nano Lett. 2009, 9, 3370–3374. [Google Scholar] [CrossRef]
- Whittingham, M.S. History, evolution, and future status of energy storage; (Special Centennial Issue). Proc. IEEE 2012, 100, 1518–1534. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Z.; Liu, F.; Wang, A.; Wang, R. High-Nickel NMA Cathode: Glycerol-Modulated Coprecipitation Preparation and an Insight into Inheritance Relationship. ACS Appl. Energy Mater. 2024, 7, 10238–10244. [Google Scholar] [CrossRef]
- Li, W.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718. [Google Scholar] [CrossRef]
- Kan, H.; Yang, Z.; Meng, Q.; Dong, P.; Zhang, Y. Preparation and Electrochemical Performance of the Ni-Rich Co-Free Cathode Material LiNi0.94Mn0.04Al0.02O2. Energy Fuels 2024, 38, 6420–6426. [Google Scholar] [CrossRef]
- Li, W.; Erickson, E.M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Lee, S.; Kmiec, S.; Manthiram, A. Effects of Coprecipitation Conditions on the Electrochemical Properties of Cobalt-Free LiNi0.9Mn0.1−xAlxO2 Cathodes. Small 2024, 20, 2406947. [Google Scholar] [CrossRef]
- Li, W.; Song, B.; Manthiram, A. High-voltage positive electrode materials for lithiumion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059. [Google Scholar] [CrossRef]
- Fan, X.; Wang, C. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Jarvis, K.; Charalambous, H.; Dolocan, A.; Manthiram, A. Stabilizing High-Nickel Cathodes with High-Voltage Electrolytes. Adv. Funct. Mater. 2023, 33, 2213675. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Amine, R.; Wen, J.; Lu, J.; Amine, K. High nickel and no cobalt─the pursuit of next-generation layered oxide cathodes. ACS Appl. Mater. Interfaces 2022, 14, 23056–23065. [Google Scholar] [CrossRef]
- Ni, L.; Chen, H.; Gao, J.; Mei, Y.; Wang, H.; Zhu, F.; Ji, X. Calcium-induced pinning effect for high-performance Co-free Ni-rich NMA layered cathode. Nano Energy 2023, 115, 108743. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Kan, H.; Zha, Y.; Li, C.; Meng, Q.; Zhang, Y. Microstructure and electrochemical properties of Mg/Nb/Zr co-doped LiNi0.94Mn0.04Al0.02O2 cathode materials. Ceram. Int. 2024, 50, 24872–24880. [Google Scholar] [CrossRef]
- Yan, W.; Yang, S.; Huang, Y.; Yang, Y.; Yuan, G. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J. Alloys Compd. 2020, 819, 153048. [Google Scholar] [CrossRef]
- Oh, P.; Yun, J.; Park, S.; Nam, G.; Liu, M.; Cho, J. Recent advances and prospects of atomic substitution on layered positive materials for lithiumion battery. Adv. Energy Mater. 2021, 11, 2003197. [Google Scholar] [CrossRef]
- Guan, P.; Zhou, L.; Yu, Z.; Sun, Y.; Liu, Y.; Wu, F.; Chu, D. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 2020, 43, 220–235. [Google Scholar] [CrossRef]
- Kalluri, S.; Yoon, M.; Jo, M.; Park, S.; Myeong, S.; Kim, J.; Cho, J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 2017, 7, 1601507. [Google Scholar] [CrossRef]
- Kuenzel, M.; Kim, G.T.; Zarrabeitia, M.; Lin, S.D.; Schuer, A.R.; Geiger, D.; Passerini, S. Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Mater. Today 2020, 39, 127–136. [Google Scholar] [CrossRef]
- Nisar, U.; Amin, R.; Essehli, R.; Shakoor, R.A.; Kahraman, R.; Kim, D.K.; Belharouak, I. Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithiumion batteries. J. Power Sources 2018, 396, 774–781. [Google Scholar] [CrossRef]
- Fu, L.J.; Liu, H.; Li, C.; Wu, Y.P.; Rahm, E.; Holze, R.; Wu, H.Q. Surface modifications of electrode materials for lithiumion batteries. Solid State Sci. 2006, 8, 113–128. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Jung, Y.H.; Seok, D.C.; Yoo, S.; Kwon, S.K.; Han, D. Surface cleaning effect of NCM powder and improvement of lithiumion battery on the thermal stability and life cycle employing dielectric barrier discharge technique. Curr. Appl. Phys. 2018, 18, 961–967. [Google Scholar] [CrossRef]
- Nisar, U.; Al-Hail SA, J.; Petla, R.K.; Shakoor, R.A.; Essehli, R.; Kahraman, R.; Amin, M.R. Understanding the origin of the ultrahigh rate performance of a SiO2-modified LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 7263–7271. [Google Scholar] [CrossRef]
- Brow, R.; Donakowski, A.; Mesnier, A.; Pereira, D.J.; Steirer, K.X.; Santhanagopalan, S.; Manthiram, A. Mechanical pulverization of Co-free nickel-rich cathodes for improved high-voltage cycling of lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 6996–7005. [Google Scholar] [CrossRef]
- Gao, T.; Tian, P.; Xu, Q.; Pang, H.; Ye, J.; Ning, G. Coating effect of various-phase alumina nanoparticles on NCM811 cathode for enhancing electrochemical performance of lithium-ion batteries. ACS Appl. Energy Mater. 2024, 7, 3904–3915. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.K.; Byun, D.; Cho, W.I.; Cho, B.W. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J. Power Sources 2004, 132, 249–255. [Google Scholar] [CrossRef]
- Cho, J.; Kim, Y.J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.S.; Martin, S.W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochim. Acta 2006, 52, 1316–1322. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Zhang, Q.; Xu, M.; Zhou, X.; Zhang, K. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 894–904. [Google Scholar] [CrossRef]
- Wefers, K.; Misra, C. Oxides and Hydroxides of Aluminum; Alcoa Laboratories: Pittsburgh, PA, USA, 1987; Volume 19. [Google Scholar]
- Jeong, M.; Kim, H.; Lee, W.; Ahn, S.J.; Lee, E.; Yoon, W.S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592. [Google Scholar] [CrossRef]
- Yang, K.; Fan, L.Z.; Guo, J.; Qu, X. Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim. Acta 2012, 63, 363–368. [Google Scholar] [CrossRef]
- Li, L.; Li, X.H.; Wang, Z.X.; Guo, H.J.; Yue, P.; Chen, W.; Wu, L. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. Powder Technol. 2011, 206, 353–357. [Google Scholar] [CrossRef]
- Ma, Q.; Peng, F.; Li, R.; Yin, S.; Dai, C. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials. Mater. Sci. Eng. B 2016, 213, 123–130. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, P.; Yue, X.; Wang, A.; Wu, Y.; Liu, X.; Zhang, Y. Effect of calcination temperature on the electrochemical performance of nickel nanoparticles on carbon coated porous silicon nanospheres anode for lithium-ion batteries. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 648, 129193. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, C.W.; Sun, Y.K. Synthesis and electrochemical behavior of Li0.1Ni0.35−x/2CoxMn0.55−x/2O2 cathode materials. Solid State Ion. 2003, 164, 43–49. [Google Scholar] [CrossRef]
- Hong, Y.; Park, Y.J.; Ryu, K.S.; Chang, S.H. Charge/discharge behavior of LiNi0.20Li0.20Mn0.60O2 and LiCo0.20Li0.27Mn0.53O2 cathode materials in lithium secondary batteries. Solid State Ion. 2005, 176, 1035–1042. [Google Scholar] [CrossRef]
- Su, Y.; Li, L.; Chen, G.; Chen, L.; Li, N.; Lu, Y.; Wu, F. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials. Chin. J. Chem. 2021, 39, 189–198. [Google Scholar] [CrossRef]
- Shepard, R.; Brennan, S.; Juran, T.R.; Young, J.; Smeu, M. Ab initio determination of a simultaneous dual-ion charging mechanism for Ni0.25Mn0.75O2 through redox reactions of Ni2+/Ni4+ and O2−/O−. J. Mater. Chem. A 2022, 10, 18916–18927. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Gu, Y.; Chen, Y.; Liu, H.; Wang, J.; Zhou, H. Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries. Mater. Lett. 2019, 238, 102–106. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Qian, D.; Meng, Y.S. Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim. Acta 2016, 203, 154–161. [Google Scholar] [CrossRef]
- Dong, S.; Zhou, Y.; Hai, C.; Zeng, J.; Sun, Y.; Ma, Y.; Wu, Z. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0.54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162. [Google Scholar] [CrossRef]
- Cao, G.; Jin, Z.; Zhu, J.; Li, Y.; Xu, B.; Xiong, Y.; Yang, J. A green Al2O3 metal oxide coating method for LiNi0.5Co0.2Mn0.3O2 cathode material to improve the high voltage performance. J. Alloys Compd. 2020, 832, 153788. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Liu, T.; Xie, Z.; Wang, Y.; Tian, K.; Zhao, J. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings 2019, 9, 92. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Wang, B.; Wang, S.; Ai, L.; Li, S. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by Al2O3 coating. J. Electrochem. Energy Convers. Storage 2021, 18, 31005. [Google Scholar] [CrossRef]
- Lee, Y.; Shin, W.K.; Kannan, A.G.; Koo, S.M.; Kim, D.W. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer. ACS Appl. Mater. Interfaces 2015, 7, 13944–13951. [Google Scholar] [CrossRef] [PubMed]
Samples | A (Å) | C (Å) | c/a | V (Å3) | I003/104 | Li+/Ni2+ Mixing | ||
---|---|---|---|---|---|---|---|---|
LNMA-0 | 2.8613 | 14.1842 | 4.957 | 100.31 | 1.24 | 3.55 | 5.68 | 7.04 |
LNMA-1 | 2.8607 | 14.1851 | 4.958 | 100.28 | 1.28 | 3.36 | 7.15 | 8.28 |
LNMA-2 | 2.8605 | 14.1857 | 4.959 | 100.23 | 1.34 | 3.17 | 6.42 | 7.56 |
LNMA-3 | 2.8606 | 14.1854 | 4.958 | 100.24 | 1.27 | 3.51 | 8.13 | 8.85 |
Cathode | ICP Analysis (Atom Ratios) | |||
---|---|---|---|---|
Li | Ni | Mn | Al | |
LNMA-0 | 1.034 | 0.895 | 0.053 | 0.052 |
LNMA-1 | 1.037 | 0.896 | 0.050 | 0.054 |
LNMA-2 | 1.035 | 0.894 | 0.051 | 0.055 |
LNMA-3 | 1.033 | 0.892 | 0.052 | 0.056 |
Cathode | /(Ω) | /(Ω) | /(cm2 s−1) |
---|---|---|---|
LNMA-0 | 2.31 | 157.6 | 3.23 × 10−11 |
LNMA-1 | 1.78 | 123.4 | 6.32 × 10−11 |
LNMA-2 | 2.24 | 114.1 | 3.95 × 10−10 |
LNMA-3 | 1.96 | 116.6 | 4.38 × 10−11 |
Cathode | /(Ω) | /(Ω) | /(Ω) | |
---|---|---|---|---|
LNMA-0–50th | 2.76 | 11.64 | 273.1 | 1.01 × 10−12 |
LNMA-2–50th | 2.45 | 8.37 | 204.3 | 5.05 × 10−12 |
Cathodes | Method | Coating Thickness | Homogeneity | Cycling | Reference | ||
---|---|---|---|---|---|---|---|
Rate | Cycling Times | Cycling Retention | |||||
LiNi0.5Co0.2Mn0.3O2 | ALD | 1.65 nm | fine | 0.5 C | 100 | 76.5% | Yang [45] |
LiNi0.13Co0.13Mn0.54O2 | solvothermal | none | none | 0.5 C | 100 | 85.7% | Zhou [46] |
LiNi0.5Co0.2Mn0.3O2 | solvothermal | none | poor | 1.0 C | 100 | 86.3% | Cao [47] |
LiNi0.8Co0.1Mn0.1O2 | ALD | 2–6 nm | fine | 0.1 C | 100 | 80.1% | Zhao [48] |
LiNi0.8Co0.1Mn0.1O2 | solvothermal | 5–30 nm | poor | 0.5 C | 100 | 82.6% | Li [49] |
LiNi0.6Co0.6Mn0.6O2 | ball-milling | 30–50 nm | poor | 0.5 C | 100 | 88.6% | Kim [50] |
LiNi0.9Mn0.05Al0.05O2 | solvothermal | 0–10 nm | fine | 0.5 C | 100 | 88.3% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, C.; Yang, N.; Xiao, Z.; Wang, A.; Wang, R. Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries. Metals 2025, 15, 892. https://doi.org/10.3390/met15080892
Liu F, Wang C, Yang N, Xiao Z, Wang A, Wang R. Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries. Metals. 2025; 15(8):892. https://doi.org/10.3390/met15080892
Chicago/Turabian StyleLiu, Fei, Chenfeng Wang, Ning Yang, Zundong Xiao, Aoxuan Wang, and Rijie Wang. 2025. "Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries" Metals 15, no. 8: 892. https://doi.org/10.3390/met15080892
APA StyleLiu, F., Wang, C., Yang, N., Xiao, Z., Wang, A., & Wang, R. (2025). Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries. Metals, 15(8), 892. https://doi.org/10.3390/met15080892