Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gschneidner, K.A., Jr.; Pecharsky, V.K.; Tsokol, A.O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 2005, 68, 1479–1539. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Smith, A.; Bahl, C.R.H.; Bjørk, R.; Engelbrecht, K.; Nielsen, K.K.; Pryds, N. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices. Adv. Energy Mater. 2012, 2, 1288–1318. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy Applications of Magnetocaloric Materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Law, J.Y.; Moreno-Ramírez, L.M.; Díaz-García, Á.; Franco, V. Current perspective in magnetocaloric materials research. J. Appl. Phys. 2023, 133, 040903. [Google Scholar] [CrossRef]
- Elliott, J.J. Thermomagnetic generator. J. Appl. Phys. 1959, 30, 1774. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A review on design and performance of thermomagnetic devices. Renew. Sust. Energy Rev. 2018, 81, 33–44. [Google Scholar] [CrossRef]
- Waske, A.; Dzekan, D.; Sellschopp, K.; Berger, D.; Stork, A.; Nielsch, K.; Fähler, S. Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology. Nat. Energy 2018, 4, 68–74. [Google Scholar] [CrossRef]
- Ahmed, R.; Jin, C.P.; Zeeshan; Mehmood, M.U.; Lim, S.H.; Lee, J.; Chun, W. Optimization of a cylindrical thermomagnetic engine for power generation from low-temperature heat sources. Int. J. Energy Res. 2021, 45, 8117–9712. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.; Liu, X.L.; Xing, C.F.; Wu, M.L.; Wang, Y.X.; Liu, P.R.; Ou, Z.Q.; Shen, J.; Taskaev, S.V.; et al. Thermomagnetic Generation Performance of Gd and La(Fe, Si)13Hy/In Material for Low-Grade Waste Heat Recovery. Adv. Sustain. Syst. 2021, 5, 2000234. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494–4497. [Google Scholar] [CrossRef]
- Hu, F.X.; Shen, B.G.; Sun, J.R.; Cheng, Z.H.; Rao, G.H.; Zhang, X.X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 2001, 78, 3675–3677. [Google Scholar] [CrossRef]
- Fujita, A.; Fujieda, S.; Hasegawa, Y.; Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B 2003, 67, 104416. [Google Scholar] [CrossRef]
- Planes, A.; Manosa, L.; Moya, X.; Krenke, T.; Acet, M.; Wassermann, E.F. Magnetocaloric effect in Heusler shape-memory alloys. J. Magn. Magn. Mater. 2007, 310, 2767–2769. [Google Scholar] [CrossRef]
- Trung, N.T.; Zhang, L.; Caron, L.; Buschow, K.H.J.; Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 2010, 96, 172504. [Google Scholar] [CrossRef]
- Liu, E.; Wang, W.; Feng, L.; Zhu, W.; Li, G.; Chen, J.; Zhang, H.; Wu, G.; Jiang, C.; Xu, H.; et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat. Commun. 2012, 3, 873. [Google Scholar] [CrossRef] [PubMed]
- Tegus, O.; Brück, E.; Buschow, K.H.J.; de Boer, F.R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 2002, 415, 150–152. [Google Scholar] [CrossRef]
- Dung, N.H.; Ou, Z.Q.; Caron, L.; Zhang, L.; Cam Thanh, D.T.; de Wijs, G.A.; de Groot, R.A.; Buschow, K.H.J.; Brück, E. Mixed magnetism for refrigeration and energy conversion. Adv. Energy Mater. 2011, 1, 1215–1219. [Google Scholar] [CrossRef]
- Guillou, F.; Porcari, G.; Yibole, H.; van Dijk, N.; Brück, E. Taming the first-order transition in giant magnetocaloric materials. Adv. Mater. 2014, 26, 2671–2675. [Google Scholar] [CrossRef]
- Phan, M.H.; Yu, S.C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Salazar-Muñoz, V.E.; Lobo Guerrero, A.; Palomares-Sánchez, S.A. Review of magnetocaloric properties in lanthanum manganites. J. Magn. Magn. Mater. 2022, 562, 169787. [Google Scholar] [CrossRef]
- Pęczkowski, P.; Łuszczek, M.; Szostak, E.; Muniraju, N.K.C.; Krztoń-Maziop, A.; Gondek, Ł. Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKxBiO3 perovskites, doped by Y, La and Pr. Acta Mater. 2022, 222, 117437. [Google Scholar] [CrossRef]
- Radelytskyi, I.; Aleshkevych, P.; Gawryluk, D.J.; Berkowski, M.; Zajarniuk, T.; Szewczyk, A.; Gutowska, M.; Hawelek, L.; Wlodarczyk, P.; Fink-Finowicki, J.; et al. Structural, magnetic, and magnetocaloric properties of Fe7Se8 single crystals. J. Appl. Phys. 2018, 124, 143902. [Google Scholar] [CrossRef]
- Ćwik, J.; Koshkid’ko, Y.; Nenkov, K.; Tereshina-Chitrova, E.; Małecka, M.; Weise, B.; Kowalska, K. Magnetocaloric performance of the three-component Ho1−xErxNi2 (x = 0.25, 0.5, 0.75) Laves phases as composite refrigerants. Sci. Rep. 2022, 12, 12332. [Google Scholar] [CrossRef] [PubMed]
- Politova, G.; Tereshina, I.; Ovchenkova, I.; Aleroev, A.R.; Koshkid’ko, Y.; Cwik, J.; Drulis, H. Investigation of Magnetocaloric Properties in the TbCo2-H System. Crystals 2022, 12, 1783. [Google Scholar] [CrossRef]
- Kamantsev, A.P.; Koshkid’ko, Y.S.; Gaifullin, R.Y.; Musabirov, I.I.; Koshelev, A.V.; Mashirov, A.V.; Sokolovskiy, V.V.; Buchelnikov, V.D.; Ćwik, J.; Shavrov, V.G. Inverse Magnetocaloric Effect in Heusler Ni44.4Mn36.2Sn14.9Cu4.5 Alloy at Low Temperatures. Metals 2023, 13, 1985. [Google Scholar] [CrossRef]
- Kutynia, K.; Przybył, A.; Gębara, P. The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials 2023, 16, 5394. [Google Scholar] [CrossRef] [PubMed]
- Salamatin, D.A.; Krasnorussky, V.N.; Magnitskaya, M.V.; Semeno, A.V.; Bokov, A.V.; Velichkov, A.; Surowiec, Z.; Tsvyashchenko, A.V. Some Magnetic Properties and Magnetocaloric Effects in the High-Temperature Antiferromagnet YbCoC2. Magnetochemistry 2023, 9, 152. [Google Scholar] [CrossRef]
- Sikora, M.; Bajorek, A.; Chrobak, A.; Deniszczyk, J.; Ziółkowski, G.; Chełkowska, G. Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds. Int. J. Mol. Sci. 2022, 23, 13182. [Google Scholar] [CrossRef]
- Belo, J.H.; Pires, A.L.; Araújo, J.P.; Pereira, A.M. Magnetocaloric materials: From micro- to nanoscale. J. Mater. Res. 2019, 34, 134–157. [Google Scholar] [CrossRef]
- Dudek, M.R.; Dudek, K.K.; Wolak, W.; Wojciechowski, K.W.; Grima, J.N. Magnetocaloric materials with ultra-small magnetic nanoparticles working at room temperature. Sci. Rep. 2019, 9, 17607. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, R.; Bortnic, R.; Hirian, R.; Covaci, E.; Frentiu, T.; Popa, F.; Deac, I.G. Magnetic and Magnetocaloric Properties of Nano- and Polycrystalline Manganites La(0.7−x)EuxBa0.3MnO3. Materials 2022, 15, 7645. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, A.; Maziarz, W.; Szczerba, M.; Kowalczyk, M.; Cesari, E.; Dutkiewicz, J. Structure and inverse magnetocaloric effect in Ni-Co-Mn-Sn(Si) Heusler alloys. Intermetallics 2018, 100, 88–94. [Google Scholar] [CrossRef]
- Bachaga, T.; Zhang, J.; Ali, S.; Suñol, J.J.; Khitouni, M. Impact of annealing on martensitic transformation of Mn50Ni42.5Sn7.5 shape memory alloy. Appl. Phys. A 2019, 125, 146. [Google Scholar] [CrossRef]
- Żuberek, R.; Chumak, O.M.; Nabiałek, A.; Chojnacki, M.; Radelytskyi, I.; Szymczak, H. Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films. J. Alloys Compd. 2018, 748, 1–5. [Google Scholar] [CrossRef]
- Sun, H.; Jing, C.; Zeng, H.; Su, Y.; Yang, S.; Zhang, Y.; Bachagha, T.; Zhou, T.; Hou, L.; Ren, W. Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni–Mn–Sn Heusler Alloy. Magnetochemistry 2022, 8, 136. [Google Scholar] [CrossRef]
- Sofronie, M.; Popescu, B.; Enculescu, M.; Tolea, M.; Tolea, F. Processing Effects on the Martensitic Transformation and Related Properties in the Ni55Fe18Nd2Ga25 Ferromagnetic Shape Memory Alloy. Nanomaterials 2022, 12, 3667. [Google Scholar] [CrossRef] [PubMed]
- Czaja, P.; Wróblewski, R.; Grzonka, J.; Przewoźnik, J.; Maziarz, W. Microstructure, Martensitic Transformation, and Inverse Magnetocaloric Effect in Ni48Mn39.5Sn12.5−xAlx Metamagnetic Shape Memory Alloys. Magnetochemistry 2018, 4, 19. [Google Scholar] [CrossRef]
- Höglin, V.; Cedervall, J.; Andersson, M.S.; Sarkar, T.; Hudl, M.; Nordblad, P.; Andersson, Y.; Sahlberg, M. Phase diagram, structures and magnetism of the FeMnP1-xSix-system. RSC Adv. 2015, 5, 8278. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zhu, Z.R.; Lai, J.W.; Zheng, Z.G.; Zeng, D.C.; Zhang, J.L. Enhance magnetocaloric effects in Mn1.15Fe0.85P0.52Si0.45B0.03 alloy achieved by copper-mould casting and annealing treatments. J. Alloys Compd. 2015, 649, 1043–1047. [Google Scholar] [CrossRef]
- He, A.; Svitlyk, V.; Mozharivskyj, Y. Synthetic Approach for (Mn,Fe)2(Si,P) Magnetocaloric Materials: Purity, Structural, Magnetic, and Magnetocaloric Properties. Inorg. Chem. 2017, 56, 2827–2833. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.Q.; Zhang, L.; Dung, N.H.; van Eijck, L.; Mulders, A.M.; Avdeev, M.; van Dijk, N.H.; Brück, E. Neutron diffraction study on the magnetic structure of Fe2P-based Mn0.66Fe1.29P1−xSix melt-spun ribbons. J. Mag. Mag. Mater. 2013, 340, 80–85. [Google Scholar] [CrossRef]
- Bao, L.L.; Meijuan, W.; Yibole, H.; Ou, Z.Q.; Guillou, F. Magnetization steps at the ferromagnetic transition of (Mn,Fe)2(P,Si) single crystals. J. Alloys Compd. 2024, 970, 172612. [Google Scholar] [CrossRef]
- Xu, J.Y.; Guillou, F.; Yibole, H.; Hardy, V. Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials. Fundam. Res. 2022, in press. [Google Scholar] [CrossRef]
- Thang, N.V.; Yibole, H.; van Dijk, N.H.; Brück, E. Effect of heat treatment conditions on MnFe(P,Si,B) compounds for room-temperature magnetic refrigeration. J. Alloys Compd. 2017, 699, 633–637. [Google Scholar] [CrossRef]
- Jing-Ting, Z.; Yibole, H.; Tegus, O. The influence of preparation process on the magnetic and magnetocaloric effects of (Mn,Fe)2(P,X) (X = Ge,Si,B) compounds. J. Inner Mongolia Normal Univ. (Nat. Sci. Ed.) 2021, 50, 197–203. (In Chinese) [Google Scholar]
- Guillou, F.; Sun-Liting; Haschuluu, O.; Ou, Z.Q.; Brück, E.; Tegus, O.; Yibole, H. Room temperature magnetic anisotropy in Fe2P-type transition metal based alloys. J. Alloys Compd. 2019, 800, 403–411. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Sosa, J.M.; Huber, D.E.; Welk, B.; Fraser, H.L. Development and application of MIPAR™: A novel software package for two-and three-dimensional microstructural characterization. Integr. Mater. Manuf. Innov. 2014, 3, 10. [Google Scholar] [CrossRef]
- Carvalho, A.M.G.; Coelho, A.A.; von Ranke, P.J.; Alves, C.S. The isothermal variation of the entropy (ΔST) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples. J. Alloys Compd. 2011, 509, 3452–3456. [Google Scholar] [CrossRef]
- Sandeman, K.G. Magnetocaloric materials: The search for new systems. Scr. Mater. 2012, 67, 566–571. [Google Scholar] [CrossRef]
- Porcari, G.; Fabbrici, S.; Pernechele, C.; Albertini, F.; Buzzi, M.; Paoluzi, A.; Kamarad, J.; Arnold, Z.; Solzi, M. Reverse magnetostructural transformation and adiabatic temperature change in Co- and In-substituted Ni-Mn-Ga alloys. Phys. Rev. B 2012, 85, 024414. [Google Scholar] [CrossRef]
- Guillou, F.; Yibole, H.; Kamantsev, A.; Porcari, G.; Cwik, J.; Koledov, V.; van Dijk, N.H.; Brück, E. Field dependence of the magnetocaloric effect in MnFe(P,Si) materials. IEEE Trans. Magn. 2015, 51, 2503904. [Google Scholar] [CrossRef]
- Verlinden, B.; Driver, J.; Samajdar, I.; Doherty, R.D. Thermo-Mechanical Processing of Metallic Materials, 1st ed.; Cahn, R.W., Ed.; Pergamon Materials Series; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Suye, B.; Yibole, H.; Meijuan, W.; Wurentuya, B.; Guillou, F. Influence of the particle size on a MnFe(P,Si,B) compound with giant magnetocaloric effect. AIP Adv. 2023, 13, 025203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qianbai, T.; Yibole, H.; Guillou, F. Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds. Metals 2024, 14, 385. https://doi.org/10.3390/met14040385
Qianbai T, Yibole H, Guillou F. Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds. Metals. 2024; 14(4):385. https://doi.org/10.3390/met14040385
Chicago/Turabian StyleQianbai, Tvrgvn, Hargen Yibole, and Francois Guillou. 2024. "Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds" Metals 14, no. 4: 385. https://doi.org/10.3390/met14040385
APA StyleQianbai, T., Yibole, H., & Guillou, F. (2024). Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds. Metals, 14(4), 385. https://doi.org/10.3390/met14040385