Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Titanium Carbidization
3.2. Homogenization of W + C Mixture before Furnace Annealing
3.3. Carbidization of Homogenized W + C Mixture in the Furnace
3.4. Ball Milling of Carbidized WC
3.5. Mechanochemical Synthesis of WC from an Elemental Mixture
3.6. Limitations and Further Scope for Improvement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Bobzin, K. High-Performance Coatings for Cutting Tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with Coated Tools: Coating Technologies, Characterization Methods and Performance Optimization. CIRP Ann. 2012, 61, 703–723. [Google Scholar] [CrossRef]
- Zhang, J.; Hassan Saeed, M.; Li, S. 13—Recent Progress in Development of High-Performance Tungsten Carbide-Based Composites: Synthesis, Characterization, and Potential Applications. In Advances in Ceramic Matrix Composites, 2nd ed.; Low, I.M., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 307–329. ISBN 978-0-08-102166-8. [Google Scholar]
- Jo, A.-R.; An, J.-S.; Kim, S.-H.; Jeong, M.-S.; Moon, Y.-H.; Hwang, S.-K. Novel Tensile Test Jig and Mechanical Properties of WC-Co Synthesized by SHIP and HIP Process. Metals 2021, 11, 884. [Google Scholar] [CrossRef]
- Hoseinpur, A.; Vahdati Khaki, J.; Marashi, M.S. Mechanochemical Synthesis of Tungsten Carbide Nano Particles by Using WO3/Zn/C Powder Mixture. Mater. Res. Bull. 2013, 48, 399–403. [Google Scholar] [CrossRef]
- Radajewski, M.; Schimpf, C.; Krüger, L. Study of Processing Routes for WC-MgO Composites with Varying MgO Contents Consolidated by FAST/SPS. J. Eur. Ceram. Soc. 2017, 37, 2031–2037. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Gong, F.; Ni, X.; Li, Z. Development and Application of WC-Based Alloys Bonded with Alternative Binder Phase. Crit. Rev. Solid State Mater. Sci. 2019, 44, 211–238. [Google Scholar] [CrossRef]
- Ojo-Kupoluyi, O.J.; Tahir, S.M.; Baharudin, B.T.H.T.; Azmah Hanim, M.A.; Anuar, M.S. Mechanical Properties of WC-Based Hardmetals Bonded with Iron Alloys—A Review. Mater. Sci. Technol. 2017, 33, 507–517. [Google Scholar] [CrossRef]
- Panov, V.S. Nanostructured Sintered WC–Co Hard Metals (Review). Powder Met. Met. Ceram. 2015, 53, 643–654. [Google Scholar] [CrossRef]
- Armstrong, R.W. The Hardness and Strength Properties of WC-Co Composites. Materials 2011, 4, 1287–1308. [Google Scholar] [CrossRef]
- Bouleghlem, M.; Zahzouh, M.; Hamidouche, M.; Boukhobza, A.; Fellah, M. Microstructural and Mechanical Investigation of WC-TiC-Co Cemented Carbides Obtained by Conventional Powder Metallurgy. Int. J. Eng. Res. Afr. 2019, 45, 1–14. [Google Scholar] [CrossRef]
- Kurlov, A.S.; Gusev, A.I.; Rempel, A.A. Vacuum Sintering of WC–8wt.% Co Hardmetals from WC Powders with Different Dispersity. Int. J. Refract. Met. Hard Mater. 2011, 29, 221–231. [Google Scholar] [CrossRef]
- Zhang, Z.; Wahlberg, S.; Wang, M.; Muhammed, M. Processing of Nanostructured WC-Co Powder from Precursor Obtained by Co-Precipitation. Nanostruct. Mater. 1999, 12, 163–166. [Google Scholar] [CrossRef]
- Kataria, R.; Kumar, J. Machining of WC-Co Composites—A Review. Mater. Sci. Forum 2015, 808, 51–64. [Google Scholar] [CrossRef]
- Lin, H.; Sun, J.; Li, C.; He, H.; Qin, L.; Li, Q. A Facile Route to Synthesize WC–Co Nanocomposite Powders and Properties of Sintered Bulk. J. Alloys Compd. 2016, 682, 531–536. [Google Scholar] [CrossRef]
- Correa, E.O.; Santos, J.N.; Klein, A.N. Microstructure and Mechanical Properties of WC Ni–Si Based Cemented Carbides Developed by Powder Metallurgy. Int. J. Refract. Met. Hard Mater. 2010, 28, 572–575. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, X.; Liu, M.; Xu, C.; Zhang, X.; Guo, S.; Chen, H. Effect of Cu on the Microstructures and Properties of WC-6Co Cemented Carbides Fabricated by SPS. Int. J. Refract. Met. Hard Mater. 2017, 62, 155–160. [Google Scholar] [CrossRef]
- Genga, R.M.; Cornish, L.A.; Akdogan, G. Effect of Mo2C Additions on the Properties of SPS Manufactured WC–TiC–Ni Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2013, 41, 12–21. [Google Scholar] [CrossRef]
- Mechanical-Property Relationships of Co/WC and Co-Ni-Fe/WC Hard Metal Alloys—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/026343689390049L?via%3Dihub (accessed on 22 October 2022).
- Chang, S.-H.; Chang, M.-H.; Huang, K.-T. Study on the Sintered Characteristics and Properties of Nanostructured WC–15 Wt% (Fe–Ni–Co) and WC–15 Wt% Co Hard Metal Alloys. J. Alloys Compd. 2015, 649, 89–95. [Google Scholar] [CrossRef]
- Upadhyaya, G.S. Materials Science of Cemented Carbides—An Overview. Mater. Des. 2001, 22, 483–489. [Google Scholar] [CrossRef]
- Dong, B.-X.; Qiu, F.; Li, Q.; Shu, S.-L.; Yang, H.-Y.; Jiang, Q.-C. The Synthesis, Structure, Morphology Characterizations and Evolution Mechanisms of Nanosized Titanium Carbides and Their Further Applications. Nanomaterials 2019, 9, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Cha, S.I.; Kim, B.K.; Hong, S.H. Effect of WC/TiC Grain Size Ratio on Microstructure and Mechanical Properties of WC–TiC–Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2006, 24, 109–114. [Google Scholar] [CrossRef]
- Brookes, K.J.A. Hardmetals and Other Hard Materials; International Carbide Data: London, UK, 1998; ISBN 978-0-9508995-6-5. [Google Scholar]
- Lay, S.; Missiaen, J.-M. 1.03—Microstructure and Morphology of Hardmetals. In Comprehensive Hard Materials; Sarin, V.K., Ed.; Elsevier: Oxford, UK, 2014; pp. 91–120. ISBN 978-0-08-096528-4. [Google Scholar]
- Andrén, H.-O. Microstructures of Cemented Carbides. Mater. Des. 2001, 22, 491–498. [Google Scholar] [CrossRef]
- Weidow, J.; Zackrisson, J.; Jansson, B.; Andrén, H.-O. Characterisation of WC-Co with Cubic Carbide Additions. Int. J. Refract. Met. Hard Mater. 2009, 27, 244–248. [Google Scholar] [CrossRef]
- Rolander, U.; Andrén, H.-O. Atom Probe Microanalysis of the γ Phase in Cemented Carbide Materials. Mater. Sci. Eng. A 1988, 105–106, 283–287. [Google Scholar] [CrossRef]
- Chen, J.; Gong, M.F.; Wu, S.H. Flank Wear Mechanism of WC-5TiC-10Co Cemented Carbides Inserts When Machining HT250 Gray Cast Iron. Appl. Mech. Mater. 2014, 670–671, 517–521. [Google Scholar] [CrossRef]
- Zhang, C.C.; Wang, Q.; Yuan, Q.Q.; Yang, Y.F.; Yi, X.L. Preparation of WC-5TiC-10Co Nanometer Powder and Performance Study of Sintering Samples. Adv. Mater. Res. 2012, 465, 220–223. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, Z.; Yang, M.; Wan, W.; Dong, G. Tool Life and Wear of WC–TiC–Co Ultrafine Cemented Carbide during Dry Cutting of AISI H13 Steel. Ceram. Int. 2013, 39, 337–346. [Google Scholar] [CrossRef]
- Guo, Z.; Xiong, J.; Yang, M.; Dong, G.; Wan, W. Tool Wear Mechanism of WC–5TiC–10Co Ultrafine Cemented Carbide during AISI 1045 Carbon Steel Cutting Process. Int. J. Refract. Met. Hard Mater. 2012, 35, 262–269. [Google Scholar] [CrossRef]
- Buravlev, I.Y.; Shichalin, O.O.; Papynov, E.K.; Golub, A.V.; Gridasova, E.A.; Buravleva, A.A.; Yagofarov, V.Y.; Dvornik, M.I.; Fedorets, A.N.; Reva, V.P.; et al. WC-5TiC-10Co Hard Metal Alloy Fabrication via Mechanochemical and SPS Techniques. Int. J. Refract. Met. Hard Mater. 2021, 94, 105385. [Google Scholar] [CrossRef]
- Xing, J.; Foroughi, P.; Franco Hernandez, A.; Behrens, A.; Cheng, Z. Facile One-step High-temperature Spray Pyrolysis Route toward Metal Carbide Nanopowders. J. Am. Ceram. Soc. 2018, 101, 5323–5334. [Google Scholar] [CrossRef]
- Manawi, Y.; Ihsanullah; Samara, A.; Al-Ansari, T.; Atieh, M. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials 2018, 11, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskovskikh, D.O.; Mukasyan, A.S.; Rogachev, A.S. Self-Propagating High-Temperature Synthesis of Silicon Carbide Nanopowders. Dokl. Phys. Chem. 2013, 449, 41–43. [Google Scholar] [CrossRef]
- Mukasyan, A.S.; Shuck, C.E.; Pauls, J.M.; Manukyan, K.V.; Moskovskikh, D.O.; Rogachev, A.S. The Solid Flame Phenomenon: A Novel Perspective. Adv. Eng. Mater. 2018, 20, 1701065. [Google Scholar] [CrossRef]
- Vidyuk, T.M.; Korchagin, M.A.; Dudina, D.V.; Bokhonov, B.B. Synthesis of Ceramic and Composite Materials Using a Combination of Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering (Review). Combust. Explos. Shock Waves 2021, 57, 385–397. [Google Scholar] [CrossRef]
- Rogachev, A.S. Mechanical Activation of Heterogeneous Exothermic Reactions in Powder Mixtures. Russ. Chem. Rev. 2019, 88, 875–900. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef] [Green Version]
- Shkodich, N.; Sedegov, A.; Kuskov, K.; Busurin, S.; Scheck, Y.; Vadchenko, S.; Moskovskikh, D. Refractory High-Entropy HfTaTiNbZr-Based Alloys by Combined Use of Ball Milling and Spark Plasma Sintering: Effect of Milling Intensity. Metals 2020, 10, 1268. [Google Scholar] [CrossRef]
- Mechanochemical Synthesis of Tungsten Carbide Powders Induced by Magnesiothermic Reduction of WCl6 and Na2CO3 Raw Materials—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/2053-1591/ab2c34 (accessed on 2 December 2022).
- Reva, V.P.; Onishchenko, D.V.; Petrov, V.V.; Kim, V.A.; Evstigneev, A.I. Formation of Hard Alloy VK8 Using Tungsten Carbide Powder Synthesized by Mechanochemical Technology. Refract. Ind. Ceram. 2013, 54, 295–298. [Google Scholar] [CrossRef]
- Reva, V.P.; Onishchenko, D.V. Synthesis of Tungsten Carbide by Mechanically Stimulated Thermal Explosion of the WO3-Mg-C System. Combust. Explos. Shock Waves 2014, 50, 68–74. [Google Scholar] [CrossRef]
- Reva, V.P.; Onishchenko, D.V. Mechanochemical Synthesis of Tungsten Carbide with the Participation of Various Carbon Components. Russ. J. Non-Ferr. Met. 2014, 55, 57–64. [Google Scholar] [CrossRef]
- Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Mukasyan, A.S. Mechanochemical Synthesis and Spark Plasma Sintering of Hafnium Carbonitride Ceramics. Adv. Powder Technol. 2021, 32, 385–389. [Google Scholar] [CrossRef]
- Nepapushev, A.A.; Kirakosyan, K.G.; Moskovskikh, D.O.; Kharatyan, S.L.; Rogachev, A.S.; Mukasyan, A.S. Influence of High-Energy Ball Milling on Reaction Kinetics in the Ni-Al System: An Electrothermorgaphic Study. Int. J. Self-Propag. High-Temp. Synth. 2015, 24, 21–28. [Google Scholar] [CrossRef]
- Reva, V.P.; Onishchenko, D.V.; Kuryavyi, V.G. Mechanochemical Synthesis Criteria for Titanium and Tungsten Carbides with Participation of Different Carbon Components. Metallurgist 2013, 56, 912–918. [Google Scholar] [CrossRef]
- Reva, V.P.; Onishchenko, D.V. Tungsten Carbide Obtained by Mechanochemical Synthesis with the Use of Different Carbon Agents. Met. Sci. Heat Treat. 2013, 55, 275–280. [Google Scholar] [CrossRef]
- Bolokang, S.; Banganayi, C.; Phasha, M. Effect of C and Milling Parameters on the Synthesis of WC Powders by Mechanical Alloying. Int. J. Refract. Met. Hard Mater. 2010, 28, 211–216. [Google Scholar] [CrossRef]
- Koc, R.; Kodambaka, S.K. Tungsten Carbide (WC) Synthesis from Novel Precursors. J. Eur. Ceram. Soc. 2000, 20, 1859–1869. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, H.; Qin, M.; Li, Z.; Jia, B.; Chu, A.; Qu, X. Study on Influencing Factors and Mechanism of High-Quality Tungsten Carbide Nanopowders Synthesized via Carbothermal Reduction. J. Alloys Compd. 2021, 867, 158959. [Google Scholar] [CrossRef]
- Ke, Z.; Zheng, Y.; Zhang, G.; Zhang, J.; Wu, H.; Xu, X.; Zhu, X. Microstructure and Mechanical Properties of WC-(Ti,W)C-Co Hardmetals Fabricated by in-Situ Carbothermal Reduction of Oxides and Subsequent Liquid Phase Sintering. J. Alloys Compd. 2021, 865, 158897. [Google Scholar] [CrossRef]
- Ke, Z.; Zheng, Y.; Zhang, G.; Wu, H.; Xu, X.; Lu, X.; Zhu, X. Fabrication of Dual-Grain Structure WC-Co Cemented Carbide by in-Situ Carbothermal Reduction of WO3 and Subsequent Liquid Sintering. Ceram. Int. 2020, 46, 12767–12772. [Google Scholar] [CrossRef]
- Reddy, K.M.; Zou, X.; Hu, Y.; Zhang, H.; Rao, T.N.; Joardar, J. Influence of Heating Rate on Formation of Nanostructured Tungsten Carbides during Thermo-Chemical Processing. Adv. Powder Technol. 2021, 32, 121–130. [Google Scholar] [CrossRef]
- Gao, L.; Kear, B.H. Synthesis of Nanophase WC Powder by a Displacement Reaction Process. Nanostruct. Mater. 1997, 9, 205–208. [Google Scholar] [CrossRef]
- Schwetz, K.A.; Hassler, J. A Wet Chemical Method for the Determination of Free Carbon in Boron Carbide, Silicon Carbide and Mixtures Thereof. J. Less Common Met. 1986, 117, 7–15. [Google Scholar] [CrossRef]
- Bartel, C.J.; Millican, S.L.; Deml, A.M.; Rumptz, J.R.; Tumas, W.; Weimer, A.W.; Lany, S.; Stevanović, V.; Musgrave, C.B.; Holder, A.M. Physical Descriptor for the Gibbs Energy of Inorganic Crystalline Solids and Temperature-Dependent Materials Chemistry. Nat. Commun. 2018, 9, 4168. [Google Scholar] [CrossRef] [PubMed]
Parameters | |||||||
---|---|---|---|---|---|---|---|
Response | Goal | Lower | Target | Upper | Weight | Importance | |
Particle size, microns | Minimum | 3.5 | 11.0 | 1 | 2 | ||
free C, % | Minimum | 0.5 | 1.2 | 1 | 10 | ||
C, % | Maximum | 17 | 20.0 | 1 | 10 | ||
Solutions | |||||||
Solution | Temperature, °C | Carbon Source | Particle Size, microns Fit | free C, % Fit | C, % Fit | Composite Desirability | |
1 | 1700.00 | Carbon black | 9.4 | 0.49 | 19.7 | 0.82 | |
2 | 1700.00 | GK | 6.9 | 0.78 | 19.6 | 0.70 | |
3 | 1644.81 | GISM | 9.3 | 0.81 | 19.7 | 0.63 | |
Prediction Confidence | |||||||
Variable | Setting | Response | Fit | SE Fit | 95% CI | 95% PI | Measurements |
Temperature, °C | 1700 | Particle size, microns | 9.4 | 0.374 | (8.554, 10.246) | (8.018, 10.782) | 8.9 ± 1.3 |
Carbon source | Carbon black | free C, % | 0.49 | 0.052 | (0.3643, 0.6186) | (0.3059, 0.6769) | 0.51 ± 0.17 |
Variable | Setting | C, % | 19.7 | 0.146 | (19.379, 20.021) | (19.059, 20.341) | 19.3 ± 1.1 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Response | Goal | Lower | Target | Upper | Weight | Importance | |
Mixture homogeneity, % | Target | 78 | 100 | 110 | 1 | 1 | |
Solutions | |||||||
Solution | Ball diameter, mm | Ball mass, g | Milling time, min | Mill rotations per minute | Mixture homogeneity, % Fit | Composite Desirability | |
1 | 25 | 250 | 117 | 40 | 100 | 1.00 | |
2 | 35 | 217 | 150 | 40 | 100 | 1.00 | |
Prediction confidence | |||||||
Variable | Setting | Response | Fit | SE Fit | 95% CI | 95% PI | Measurements |
Ball diameter, mm | 25 | Mixture homogeneity, % | 100 | 0.629 | (98.684, 101.316) | (98.073, 101.927) | 99.1 ± 0.6 |
Ball mass, g | 250 | ||||||
Milling time, min | 117 | ||||||
Mill rotations per minute | 40 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Response | Goal | Lower | Target | Upper | Weight | Importance | |
Free carbon, % | Target | 0 | 0.001 | 1.6 | 1 | 1 | |
Solutions | |||||||
Solution | Temperature, °C | Duration, min | Height of powder in boats, mm | Free carbon, % Fit | Composite Desirability | Solution | |
1 | 1400.00 | 107 | 10 | 0.001 | 1.00 | 1 | |
2 | 1400.00 | 180 | 14.65 | 0.001 | 1.00 | 2 | |
3 | 1346.5 | 180 | 10 | 0.001 | 1.00 | 3 | |
Prediction confidence | |||||||
Variable | Setting | Response | Fit | SE Fit | 95% CI | 95% PI | Measurements |
Temperature, °C | 1400 | Free carbon, % | 0.001 | 0.0552 | (−0.1128, 0.1148) | (−0.2880, 0.2900) | 0.15 ± 0.08 |
Duration, min | 107 | ||||||
Height of powder in boats, mm | 10 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Response | Goal | Lower | Target | Upper | Weight | Importance | |
WC grain size | Minimum | 3 | 22 | 1 | 1 | ||
Solutions | |||||||
Solution | Ball to WC ratio | Milling duration, min | Milling speed, rpm | WC grains size Fit | Composite Desirability | Solution | |
1 | 2 | 150 | 40 | 1.83 | 1.00 | 1 | |
2 | 1.8 | 150 | 40 | 3 | 1.00 | 2 | |
3 | 1.75 | 150 | 40 | 3.35 | 0.98 | 3 | |
Prediction confidence | |||||||
Variable | Setting | Response | Fit | SE Fit | 95% CI | 95% PI | Measurements |
Ball to WC ratio | 2 | WC grains size | 1.83 | 0.421 | (0.967, 2.702) | (−0.104, 3.774) | 1.9 ± 0.4 |
Milling duration, min | 150 | ||||||
Milling speed, rpm | 40 |
Mechanochemical Synthesis Duration, min | Content, w.% | Phase Composition | |||
---|---|---|---|---|---|
C Total | C Free | Fe | (W,Ti)C | W2C | |
15 | 4.76 | 0.9 | - | 66.2 | 33.4 |
30 | 5.55 | 0.17 | - | 77.8 | 21.9 |
45 | 5.6 | 0.16 | 1.1 | 77.5 | 22.1 |
60 | 5.61 | 0.14 | 3.6 | 78.2 | 21.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terlikbaeva, A.; Alimzhanova, A.; Eremeeva, Z.; Mukhametzhanova, A.; Maldybaev, G.; Shayahmetova, R.; Abedi, M.; Moskovskikh, D. Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study. Metals 2022, 12, 2144. https://doi.org/10.3390/met12122144
Terlikbaeva A, Alimzhanova A, Eremeeva Z, Mukhametzhanova A, Maldybaev G, Shayahmetova R, Abedi M, Moskovskikh D. Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study. Metals. 2022; 12(12):2144. https://doi.org/10.3390/met12122144
Chicago/Turabian StyleTerlikbaeva, Alma, Aliya Alimzhanova, Zhanna Eremeeva, Anar Mukhametzhanova, Galimzhan Maldybaev, Roza Shayahmetova, Mohammad Abedi, and Dmitry Moskovskikh. 2022. "Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study" Metals 12, no. 12: 2144. https://doi.org/10.3390/met12122144
APA StyleTerlikbaeva, A., Alimzhanova, A., Eremeeva, Z., Mukhametzhanova, A., Maldybaev, G., Shayahmetova, R., Abedi, M., & Moskovskikh, D. (2022). Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study. Metals, 12(12), 2144. https://doi.org/10.3390/met12122144