Study of Diffusible Behavior of Hydrogen in First Generation Advanced High Strength Steels
Abstract
1. Introduction
2. Experimental
2.1. Sample Preparation for Metallography
2.2. Hydrogen Permeation Specimen Preparation
2.3. Hydrogen Permeation Cell
2.4. Experimental Procedure
- Step I (Cathodic Pre-charging): When the background current density at the detection side was below 0.3 µA·cm−2, a cathodic current density of −10 mA·cm−2 was applied on the charging surface until an observable steady-state current permeation current density occurred (Figure 2b).
- Step II (Subsequent Partial Transient): After step I, the charging current density was raised to −20 mA·cm−2. Once the permeation current density reached a new steady-state, the charging current density was lowered back to −10 mA·cm−2. The applied current density was held for 5000 s for each step. The steps were repeated to verify the permeation curves’ reproducibility (as shown in Figure 2c).
- Step III (Partial Transient Loop): After completing step II, the charging current density was raised from −10 mA·cm−2 to −50 mA·cm−2 and after that lowered to −10 mA·cm−2 (thus creating a loop), with a step size of −10 mA·cm−2 (Figure 2d) and holding time of 5000 s for each step.
3. Results
3.1. Microstructure
3.2. Hydrogen Diffusion Coefficient
3.3. Hydrogen Concentration
3.4. Hydrogen Trapping
3.5. Trap Activation Energy
4. Discussion
5. Conclusions
- DL in CP1000 steel is twice as compared to that of the DP800 and DP1000 steels.
- Higher DL in CP1000 steel is due to the microstructural feature that lowered trap density and enabled easier H diffusion and decreased H concentration at the sub-surface. The relatively lower carbon concentration in CP steels is a possible reason for the low H sub-surface concentration.
- Higher fraction of the trapped hydrogen in CP steel is due to the presence of cementite particles.
- CP steel had the least trap density compared to DP steels but had a higher trap strength.
- CL is higher for DP800 due to easier saturation of traps in DP800 leading of H enrichment in the lattice.
- H concentration effusing from the discharge side is almost a third from that of the charging side, suggesting a non-uniform distribution of H across the cross-section, and higher H concentration near the charging surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Iron and Steel Institute: Automotive. Available online: http://www.Autosteel.Org/Research/Growth-of-Ahss (accessed on 1 October 2020).
- Khalaj, G.; Pouraliakbar, H.; Arab, N.; Nazerfakhari, M. Correlation of Passivation Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in HSLA Steels. Measurement 2015, 75, 5–11. [Google Scholar] [CrossRef]
- Djukic, M.B.; Bakic, G.M.; Zeravcic, V.S.; Sedmak, A.; Rajicic, B. Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models. Corrosion 2016, 72, 943–961. [Google Scholar] [CrossRef]
- Khalaj, G.; Khalaj, M.-J. Investigating the Corrosion of the Heat-Affected Zones (HAZs) of API-X70 Pipeline Steels in Aerated Carbonate Solution by Electrochemical Methods. Int. J. Press. Vessels Pip. 2016, 145, 1–12. [Google Scholar] [CrossRef]
- Nanda, T.; Singh, V.; Singh, G.; Singh, M.; Kumar, B.R. Processing Routes, Resulting Microstructures, and Strain Rate Dependent Deformation Behaviour of Advanced High Strength Steels for Automotive Applications. Arch. Civ. Mech. Eng. 2021, 21, 7. [Google Scholar] [CrossRef]
- Montoya-Rangel, M.; Garza-Montes de Oca, N.; Gaona-Tiburcio, C.; Colás, R.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Chacón-Nava, J.; Almeraya-Calderón, F. Electrochemical Noise Measurements of Advanced High-Strength Steels in Different Solutions. Metals 2020, 10, 1232. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Man, C.; Hu, Y.; Yu, Q.; Li, X. The Effect of Microstructure on Corrosion Behavior of Ultra-High Strength Martensite Steel-A Literature Review. Int. J. Miner. Metall. Mater. 2020. [Google Scholar] [CrossRef]
- Popov, B.N.; Lee, J.-W.; Djukic, M.B. Chapter 7—Hydrogen Permeation and Hydrogen-Induced Cracking. In Handbook of Environmental Degradation of Materials, 3rd ed.; Kutz, M., Ed.; William Andrew Publishing (USA): Burlington, MA, USA, 2018; pp. 133–162. ISBN 978-0-323-52472-8. [Google Scholar]
- Loidl, M.; Kolk, O.; Veith, S.; Göbel, T. Characterization of Hydrogen Embrittlement in Automotive Advanced High Strength Steels. Mater. Werkst. 2011, 42, 1105–1110. [Google Scholar] [CrossRef]
- Fallahmohammadi, E.; Bolzoni, F.; Lazzari, L. Measurement of Lattice and Apparent Diffusion Coefficient of Hydrogen in X65 and F22 Pipeline Steels. Int. J. Hydrogen Energy 2013, 38, 2531–2543. [Google Scholar] [CrossRef]
- Sun, S.; Gu, J.; Chen, N. The Influence of Hydrogen on the Sub-Structure of the Martensite and Ferrite Dual-Phase Steel. Scr. Metall. 1989, 23, 1735–1737. [Google Scholar] [CrossRef]
- Lynch, S. Some Fractographic Contributions to Understanding Fatigue Crack Growth. Int. J. Fatigue 2017, 104, 12–26. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen Embrittlement Phenomena and Mechanisms. Corros. Rev. 2012, 30. [Google Scholar] [CrossRef]
- Koyama, M.; Akiyama, E.; Tsuzaki, K. Effect of Hydrogen Content on the Embrittlement in a Fe–Mn–C Twinning-Induced Plasticity Steel. Corros. Sci. 2012, 59, 277–281. [Google Scholar] [CrossRef]
- Depover, T.; Vercruysse, F.; Elmahdy, A.; Verleysen, P.; Verbeken, K. Evaluation of the Hydrogen Embrittlement Susceptibility in DP Steel under Static and Dynamic Tensile Conditions. Int. J. Impact Eng. 2019, 123, 118–125. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of Hydrogen Embrittlement in Steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef]
- Avramovic-Cingara, G.; Ososkov, Y.; Jain, M.K.; Wilkinson, D.S. Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels. Mater. Sci. Eng. A 2009, 516, 7–16. [Google Scholar] [CrossRef]
- Hilditch, T.; Lee, S.; Speer, J.; Matlock, D. Response to Hydrogen Charging in High Strength Automotive Sheet Steel Products. SAE Tech. Pap. 2003, 1764, 47–56. [Google Scholar] [CrossRef]
- Addach, H.; Berçot, P.; Rezrazi, M.; Takadoum, J. Study of the Electrochemical Permeation of Hydrogen in Iron. Corros. Sci. 2009, 51, 263–267. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, W.; Lu, K.; Wang, Z.; Xing, Y.; Du, Y.; Lu, M. Effect of the Cathodic Current Density on the Sub-Surface Concentration of Hydrogen in X80 Pipeline Steels under Cathodic Protection. Int. J. Hydrogen Energy 2017, 42, 3389–3398. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen- Related Fracture. Mater. Sci. Eng. A 1994, A176, 191–202. [Google Scholar] [CrossRef]
- Sofronis, P. Viable Mechanisms of Hydrogen Embrittlement—A Review. AIP Conf. Proc. 2006, 837, 64–70. [Google Scholar]
- Plennevaux, C.; Kittel, J.; Frégonèse, M.; Normand, B.; Ropital, F.; Grosjean, F.; Cassagne, T. Contribution of CO2 on Hydrogen Evolution and Hydrogen Permeation in Low Alloy Steels Exposed to H2S Environment. Electrochem. Commun. 2013, 26, 17–20. [Google Scholar] [CrossRef]
- Ma, H.C.; Zagidulin, D.; Goldman, M.; Shoesmith, D.W. Influence of Iron Oxides and Calcareous Deposits on the Hydrogen Permeation Rate in X65 Steel in a Simulated Groundwater. Int. J. Hydrogen Energy 2021, 46, 6669–6679. [Google Scholar] [CrossRef]
- Dey, S.; Sivaprasad, S.; Das, N.; Chattoraj, I. Study of Electrochemical Behavior, Hydrogen Permeation and Diffusion in Pipeline Steel. Mater. Sci. Forum 2021, 1019, 145–156. [Google Scholar] [CrossRef]
- Zakroczymski, T. Electrochemical Determination of Hydrogen in Metals. J. Electroanal. Chem. 1999, 475, 82–88. [Google Scholar] [CrossRef]
- Zakroczymski, T. Adaptation of the Electrochemical Permeation Technique for Studying Entry, Transport and Trapping of Hydrogen in Metals. Electrochim. Acta 2006, 51, 2261–2266. [Google Scholar] [CrossRef]
- Thomas, R.L.S.; Li, D.; Gangloff, R.P.; Scully, J.R. Trap-Governed Hydrogen Diffusivity and Uptake Capacity in Ultrahigh-Strength AERMET 100 Steel. Metall. Mater. Trans. A 2002, 33, 1991–2004. [Google Scholar] [CrossRef]
- Parvathavarthini, N.; Saroja, S.; Dayal, R.K.; Khatak, H.S. Studies on Hydrogen Permeability of 2.25% Cr–1% Mo Ferritic Steel: Correlation with Microstructure. J. Nucl. Mater. 2001, 288, 187–196. [Google Scholar] [CrossRef]
- Lan, L.; Kong, X.; Hu, Z.; Qiu, C.; Zhao, D.; Du, L. Hydrogen Permeation Behavior in Relation to Microstructural Evolution of Low Carbon Bainitic Steel Weldments. Corros. Sci. 2016, 112, 180–193. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, S.M. Hydrogen Trapping Phenomena in Metals with BCC and FCC Crystals Structures by the Desorption Thermal Analysis Technique. Surf. Coat. Technol. 1986, 28, 301–314. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, J.-Y. The Trapping and Transport Phenomena of Hydrogen in Nickel. Metall. Trans. A 1986, 17, 181–187. [Google Scholar] [CrossRef]
- Smanio, V.; Fregonese, M.; Kittel, J.; Cassagne, T.; Ropital, F.; Normand, B. Wet Hydrogen Sulfide Cracking of Steel Monitoring by Acoustic Emission: Discrimination of AE Sources. J. Mater. Sci. 2010, 45, 5534–5542. [Google Scholar] [CrossRef]
- Krom, A.H.M.; Bakker, A. Hydrogen Trapping Models in Steel. Metall. Mater. Trans. B 2000, 31, 1475–1482. [Google Scholar] [CrossRef]
- Allen, Q.S.; Nelson, T.W. Microstructural Evaluation of Hydrogen Embrittlement and Successive Recovery in Advanced High Strength Steel. J. Mater. Process. Technol. 2019, 265, 12–19. [Google Scholar] [CrossRef]
- Chan, S.L.I. Hydrogen Trapping Ability of Steels with Different Microstructures. J. Chin. Inst. Eng. 1999, 22, 43–53. [Google Scholar] [CrossRef]
- Tau, L.; Chan, S.L.I.; Shin, C.S. Hydrogen Enhanced Fatigue Crack Propagation of Bainitic and Tempered Martensitic Steels. Corros. Sci. 1996, 38, 2049–2060. [Google Scholar] [CrossRef]
- Tian, H.; Xin, J.; Li, Y.; Wang, X.; Cui, Z. Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater. Corros. Sci. 2019, 158, 108089. [Google Scholar] [CrossRef]
- Djukic, M.B.; Zeravcic, V.S.; Bakic, G.; Sedmak, A.; Rajicic, B. Hydrogen Embrittlement of Low Carbon Structural Steel. Procedia Mater. Sci. 2014, 3, 1167–1172. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kang, J.-H.; Kim, S.-J. Carbon Effect on Hydrogen Diffusivity and Embrittlement in Austenitic Stainless Steels. Corros. Sci. 2021, 180, 109226. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Z. Thermomechanical Processing of Advanced High Strength Steels. Prog. Mater. Sci. 2018, 94, 174–242. [Google Scholar] [CrossRef]
- Zinkevich, M.; Mattern, N.; Handstein, A.; Gutfleisch, O. Thermodynamics of Fe–Sm, Fe–H, and H–Sm Systems and Its Application to the Hydrogen–Disproportionation–Desorption–Recombination (HDDR) Process for the System Fe17Sm2–H2. J. Alloys Compd. 2002, 339, 118–139. [Google Scholar] [CrossRef]
- Smanio, V.; Fregonese, M.; Kittel, J.; Cassagne, T.; Ropital, F.; Normand, B. Contribution of Acoustic Emission to the Understanding of Sulfide Stress Cracking of Low Alloy Steels. Corros. Sci. 2011, 53, 3942–3949. [Google Scholar] [CrossRef]
- Jo, J.W.; Seo, H.J.; Jung, B.-I.; Choi, S.; Lee, C.S. Effect of Bainite Fraction on Hydrogen Embrittlement of Bainite/Martensite Steel. Mater. Sci. Eng. A 2021, 814, 141226. [Google Scholar] [CrossRef]
- Barnoush, A.; Vehoff, H. Recent Developments in the Study of Hydrogen Embrittlement: Hydrogen Effect on Dislocation Nucleation. Acta Mater. 2010, 58, 5274–5285. [Google Scholar] [CrossRef]
- Oriani, R.A. The Diffusion and Trapping of Hydrogen in Steel. Acta Metall. 1970, 18, 147–157. [Google Scholar] [CrossRef]
- Wasim, M.; Djukic, M.B.; Ngo, T.D. Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel. Eng. Fail. Anal. 2021, 123, 105312. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Novak, P.; Ahn, D.C.; Liu, J.B.; Sofronis, P.; Johnson, D.D.; Robertson, I.M. Recent Advances in the Study of Structural Materials Compatibility with Hydrogen. Adv. Mater. 2010, 22, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Jemblie, L.; Olden, V.; Akselsen, O.M. A Coupled Diffusion and Cohesive Zone Modelling Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures. Int. J. Hydrogen Energy 2017, 42, 11980–11995. [Google Scholar] [CrossRef]
- Iannuzzi, M.; Barnoush, A.; Johnsen, R. Materials and Corrosion Trends in Offshore and Subsea Oil and Gas Production. Npj Mater. Degrad. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Djukic, M.B.; Bakic, G.M.; Sijacki Zeravcic, V.; Sedmak, A.; Rajicic, B. The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion. Eng. Fract. Mech. 2019, 216, 106528. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Zhang, J.; Akiyama, E.; Wang, Y.; Song, X. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 759–773. [Google Scholar] [CrossRef]
- Martin, M.L.; Dadfarnia, M.; Nagao, A.; Wang, S.; Sofronis, P. Enumeration of the Hydrogen-Enhanced Localized Plasticity Mechanism for Hydrogen Embrittlement in Structural Materials. Acta Mater. 2019, 165, 734–750. [Google Scholar] [CrossRef]
- Turnbull, A. Perspectives on Hydrogen Uptake, Diffusion and Trapping. Int. J. Hydrogen Energy 2015, 40, 16961–16970. [Google Scholar] [CrossRef]
- Zakroczymski, T. Activation of the Iron Surface to Hydrogen Absorption Resulting from a Long Cathodic Treatment in NaOH Solution. J. Electrochem. Soc. 1985, 132, 2548. [Google Scholar] [CrossRef]
- Haq, A.J.; Muzaka, K.; Dunne, D.P.; Calka, A.; Pereloma, E.V. Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels. Int. J. Hydrogen Energy 2013, 38, 2544–2556. [Google Scholar] [CrossRef]
- Liu, Q.; Atrens, A. Reversible Hydrogen Trapping in a 3.5NiCrMoV Medium Strength Steel. Corros. Sci. 2015, 96, 112–120. [Google Scholar] [CrossRef]
- Szklarska-Smialowska, Z. Effect of EDTA on the Cathodic Reduction of Oxide Films on Iron in Sodium Hydroxide Solution. J. Electrochem. Soc. 1985, 132, 2543–2548. [Google Scholar] [CrossRef]
- Liu, Q.; Venezuela, J.; Zhang, M.; Zhou, Q.; Atrens, A. Hydrogen Trapping in Some Advanced High Strength Steels. Corros. Sci. 2016, 111, 770–785. [Google Scholar] [CrossRef]
- Garcia, D.C.S.; Carvalho, R.N.; Lins, V.F.C.; Rezende, D.M.; Dos Santos, D.S. Influence of Microstructure in the Hydrogen Permeation in Martensitic-Ferritic Stainless Steel. Int. J. Hydrogen Energy 2015, 40, 17102–17109. [Google Scholar] [CrossRef]
- Schaffner, T.; Hartmaier, A.; Kokotin, V.; Pohl, M. Analysis of Hydrogen Diffusion and Trapping in Ultra-High Strength Steel Grades. J. Alloys Compd. 2018, 746, 557–566. [Google Scholar] [CrossRef]
- Boiadjieva, T.; Mirkova, L.; Kronberger, H.; Steck, T.; Monev, M. Hydrogen Permeation through Steel Electroplated with Zn or Zn–Cr Coatings. Electrochim. Acta 2013, 114, 790–798. [Google Scholar] [CrossRef]
- Gesnouin, C.; Hazarabedian, A.; Bruzzoni, P.; Ovejero-García, J.; Bilmes, P.; Llorente, C. Effect of Post-Weld Heat Treatment on the Microstructure and Hydrogen Permeation of 13CrNiMo Steels. Corros. Sci. 2004, 46, 1633–1647. [Google Scholar] [CrossRef]
- Hadam, U.; Zakroczymski, T. Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques. Int. J. Hydrogen Energy 2009, 34, 2449–2459. [Google Scholar] [CrossRef]
- Coleman, D.H.; Popov, B.N.; White, R.E. Hydrogen Permeation Inhibition by Thin Layer Zn—Ni Alloy Electrodeposition. J. Appl. Electrochem. 1998, 28, 889–894. [Google Scholar] [CrossRef]
- Frappart, S.; Oudriss, A.; Feaugas, X.; Creus, J.; Bouhattate, J.; Thébault, F.; Delattre, L.; Marchebois, H. Hydrogen Trapping in Martensitic Steel Investigated Using Electrochemical Permeation and Thermal Desorption Spectroscopy. Scr. Mater. 2011, 65, 859–862. [Google Scholar] [CrossRef]
- Pérez Escobar, D.; Duprez, L.; Atrens, A.; Verbeken, K. Influence of Experimental Parameters on Thermal Desorption Spectroscopy Measurements during Evaluation of Hydrogen Trapping. J. Nucl. Mater. 2014, 450, 32–41. [Google Scholar] [CrossRef]
- Galán, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbaert, Y. Advanced High Strength Steels for Automotive Industry. Rev. Metal. 2012, 48, 118–131. [Google Scholar] [CrossRef]
- Davies, R.G. Influence of Martensite Content on the Hydrogen Embrittlement of Dual-Phase Steels. Scr. Metall. 1983, 17, 889–892. [Google Scholar] [CrossRef]
- Davies, R.G. Hydrogen Embrittlement of Dual-Phase Steels. Metall. Trans. A 1981, 12, 1667–1672. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Q.; Venezuela, J.; Zhang, M.; Atrens, A. Hydrogen Concentration in Dual-Phase (DP) and Quenched and Partitioned (Q&P) Advanced High-Strength Steels (AHSS) under Simulated Service Conditions Compared with Cathodic Charging Conditions. Adv. Eng. Mater. 2016, 18, 1438–1656. [Google Scholar] [CrossRef]
- Grabke, H.J.; Riecke, E. Absorption and Diffusion of Hydrogen in Steels. Mater. Tehnol. 2000, 34, 331–342. [Google Scholar]
- Zhang, D.; Gao, X.; Du, Y.; Du, L.; Wang, H.; Liu, Z.; Su, G. Effect of Microstructure Refinement on Hydrogen-Induced Damage Behavior of Low Alloy High Strength Steel for Flexible Riser. Mater. Sci. Eng. A 2019, 765, 138278. [Google Scholar] [CrossRef]
- Dong, C.F.; Liu, Z.Y.; Li, X.G.; Cheng, Y.F. Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking. Int. J. Hydrogen Energy 2009, 34, 9879–9884. [Google Scholar] [CrossRef]
- Castaño Rivera, P.; Ramunni, V.P.; Bruzzoni, P. Hydrogen Trapping in an API 5L X60 Steel. Corros. Sci. 2012, 54, 106–118. [Google Scholar] [CrossRef]
- Park, G.T.; Koh, S.U.; Jung, H.G.; Kim, K.Y. Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel. Corros. Sci. 2008, 50, 1865–1871. [Google Scholar] [CrossRef]
- Ningshen, S.; Uhlemann, M.; Schneider, F.; Khatak, H.S. Diffusion Behaviour of Hydrogen in Nitrogen Containing Austenitic Alloys. Corros. Sci. 2001, 43, 2255–2264. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, B.; Wu, Y.; Zhang, X.; Liu, J.; Zhang, G.; Wu, K. Experimental and Numerical Analysis of Hydrogen Diffusion Behaviors in an Ultra-Fine Bainitic Steel. Int. J. Hydrogen Energy 2020, 45, 25493–25508. [Google Scholar] [CrossRef]
- Fielding, L.C.D.; Song, E.J.; Han, D.K.; Bhadeshia, H.K.D.H.; Suh, D.-W. Hydrogen Diffusion and the Percolation of Austenite in Nanostructured Bainitic Steel. Proc. R. Soc. Math. Phys. Eng. Sci. 2014, 470, 20140108. [Google Scholar] [CrossRef]
- Wang, S.H.; Luu, W.C.; Ho, K.F.; Wu, J.K. Hydrogen Permeation in a Submerged Arc Weldment of TMCP Steel. Mater. Chem. Phys. 2003, 77, 447–454. [Google Scholar] [CrossRef]
- Koyama, M.; Yamasaki, D.; Nagashima, T.; Tasan, C.C.; Tsuzaki, K. In Situ Observations of Silver-Decoration Evolution under Hydrogen Permeation: Effects of Grain Boundary Misorientation on Hydrogen Flux in Pure Iron. Scr. Mater. 2017, 129, 48–51. [Google Scholar] [CrossRef]
- Olden, V. FE Modelling of Hydrogen Induced Stress Crackingin 25% Cr Duplex Stainless Steel. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, August 2008; p. 127. [Google Scholar]
- Noh, H.-S.; Kang, J.-H.; Kim, K.-M.; Kim, S.-J. The Effect of Carbon on Hydrogen Embrittlement in Stable Cr-Ni-Mn-N Austenitic Stainless Steels. Corros. Sci. 2017, 124, 63–70. [Google Scholar] [CrossRef]
- Ramunni, V.P.; Coelho, T.D.P.; de Miranda, P.E.V. Interaction of Hydrogen with the Microstructure of Low-Carbon Steel. Mater. Sci. Eng. A 2006, 435–436, 504–514. [Google Scholar] [CrossRef]
- Chun, Y.S.; Park, K.-T.; Lee, C.S. Delayed Static Failure of Twinning-Induced Plasticity Steels. Viewp. Set No 50 Twinning Induc. Plast. 2012, 66, 960–965. [Google Scholar] [CrossRef]
- Luppo, M.I.; Ovejero-Garcia, J. The Influence of Microstructure on the Trapping and Diffusion of Hydrogen in a Low Carbon Steel. Corros. Sci. 1991, 32, 1125–1136. [Google Scholar] [CrossRef]
- Wang, M.; Akiyama, E.; Tsuzaki, K. Effect of Hydrogen and Stress Concentration on the Notch Tensile Strength of AISI 4135 Steel. Mater. Sci. Eng. A 2005, 398, 37–46. [Google Scholar] [CrossRef]
- Neeraj, T.; Srinivasan, R.; Li, J. Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding. Acta Mater. 2012, 60, 5160–5171. [Google Scholar] [CrossRef]
- Pereira, P.A.S.; Franco, C.S.G.; Guerra Filho, J.L.M.; dos Santos, D.S. Hydrogen Effects on the Microstructure of a 2.25Cr–1Mo–0.25 V Steel Welded Joint. Int. J. Hydrogen Energy 2015, 40, 17136–17143. [Google Scholar] [CrossRef]
- Moon, K.-M.; Lee, M.-H.; Kim, K.-J.; Kim, S.-J. The Effect of Post-Weld Heat Treatment Affecting Corrosion Resistance and Hydrogen Embrittlement of HAZ Part in FCAW. Surf. Coat. Technol. 2003, 169–170, 675–678. [Google Scholar] [CrossRef]
- Koyama, M.; Tasan, C.C.; Akiyama, E.; Tsuzaki, K.; Raabe, D. Hydrogen-Assisted Decohesion and Localized Plasticity in Dual-Phase Steel. Acta Mater. 2014, 70, 174–187. [Google Scholar] [CrossRef]
- Crolet, J.-L. Analysis of the Various Processes Downstream Cathodic Hydrogen Charging, I: Diffusion, Laboratory Permeation and Measurement of Hydrogen Content and Diffusion Coefficient. Matér. Tech. 2016, 104, 205. [Google Scholar] [CrossRef]
C | Mn | Si | Al | Ni | Cr | Ti | Fe | |
---|---|---|---|---|---|---|---|---|
DP800 | 0.14 | 1.73 | 0.26 | 0.07 | 0.01 | 0.56 | 0.02 | Bal. |
DP1000 | 0.14 | 2.14 | 0.05 | 0.04 | 0.02 | 0.58 | 0.03 | Bal. |
CP1000 | 0.11 | 2.12 | 0.05 | 0.05 | 0.02 | 0.56 | 0.03 | Bal. |
Ferrite | Martensite | Bainite | UTS. | Rp0.2 | % Elongation | |||
---|---|---|---|---|---|---|---|---|
Amount | Grain Size | Amount | Grain Size | Amount | (MPa) | (MPa) | ||
DP800 | 77–80% | 2.10 µm | 20–22% | 1.32 µm | 2–3% | 860 | 776 | 29.74 |
DP1000 | 50–55% | 1.34 µm | 40–45% | 1.29 µm | 2–5% | 1050 | 996 | 23.32 |
CP1000 | 30–35% | 0.96 µm | 50–55% | 0.95 µm | 15–20% | 1024 | 998 | 18.04 |
H Charging (mA·cm−2) | Nt (1015 Site·cm−3) | CT* (mol·m−3) | CT*/CT × 100% | Ea (kJ·mol−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DP800 | DP1000 | CP1000 | DP800 | DP1000 | CP1000 | DP800 | DP1000 | CP1000 | DP800 | DP1000 | CP1000 | |
−50 to −40 | 7.76 | 1.59 | 0.86 | 0.073 | 0.032 | 0.017 | 40.00 | 33.44 | 32.66 | 34.05 | 37.62 | 38.94 |
−40 to −30 | 8.62 | 3.72 | 1.48 | 0.084 | 0.044 | 0.029 | 37.77 | 32.18 | 28.52 | |||
−30 to −20 | 16.80 | 10.04 | 2.21 | 0.136 | 0.067 | 0.043 | 37.25 | 32.40 | 28.21 | |||
−20 to −10 | 28.50 | 24.10 | 23.2 | 0.217 | 0.127 | 0.212 | 32.45 | 36.99 | 31.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallick, D.; Mary, N.; Raja, V.S.; Normand, B. Study of Diffusible Behavior of Hydrogen in First Generation Advanced High Strength Steels. Metals 2021, 11, 782. https://doi.org/10.3390/met11050782
Mallick D, Mary N, Raja VS, Normand B. Study of Diffusible Behavior of Hydrogen in First Generation Advanced High Strength Steels. Metals. 2021; 11(5):782. https://doi.org/10.3390/met11050782
Chicago/Turabian StyleMallick, Dwaipayan, Nicolas Mary, V. S. Raja, and Bernard Normand. 2021. "Study of Diffusible Behavior of Hydrogen in First Generation Advanced High Strength Steels" Metals 11, no. 5: 782. https://doi.org/10.3390/met11050782
APA StyleMallick, D., Mary, N., Raja, V. S., & Normand, B. (2021). Study of Diffusible Behavior of Hydrogen in First Generation Advanced High Strength Steels. Metals, 11(5), 782. https://doi.org/10.3390/met11050782