Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electro. Chemical Micro Machining Arrangement
2.2. Selection of Process Variables
2.3. Selection of Performance Measures
3. Results and Discussion
3.1. Influence of Additive Manufactured Tool Electrode on MRR
3.2. Influence of Additive Manufactured Tool Electrode on Circularity and Overcut
3.3. Surface Morphology Analysis with Additive Manufactured Tool Electrode
4. Conclusions
- The additive manufactured tool can produce higher MRR, since the composition of additive tool has more uniformity with strong atomic bond of metals and higher tool conductivity.
- The additive manufacturing can give considerable dimensional accuracy in terms of circularity and overcut due to increased localization effect and less stray current.
- The lower tool corrosion can be obtained in additively manufactured tool, since the additive tool has porous and less surface defects owing its fabrication of layer-by-layer addition of material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suresh, H.S.; Sudhir, G.B.; Dayanand, S.B. Analysis of electrochemical machining process parameters affecting material removal rate of hastelloy C-276. Int. J. Adv. Res. Sci. Eng. Technol. 2014, 5, 18–23. [Google Scholar]
- Haisch, T.; Mittemeijer, E.; Schultze, J.W. Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides. Electrochim. Acta 2001, 47, 235–241. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Sundaram, M.M.; Malshe, A.P. Review of electrochemical and electro discharge machining. Procedia CIRP 2013, 6, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Sen, M.; Shan, H.S. A review of electrochemical macro- to microhole drilling processes. Int. J. Mach. Tool. Manuf. 2005, 45, 137–152. [Google Scholar] [CrossRef]
- Chiou, Y.C.; Lee, R.T.; Chen, T.J.; Chiou, J.M. Fabrication of high aspect ratio micro-rod using a novel electrochemical micromachining method. Precis. Eng. 2012, 36, 193–202. [Google Scholar] [CrossRef]
- Mileham, A.R.; Jones, R.M.; Harvey, S.J. Changes of valency state during Electrochemical Machining Production Points. Precis. Eng. 1982, 4, 168–170. [Google Scholar] [CrossRef]
- Thanigaivelan, R.; Arunachalam, R.M.; Karthikeyan, B.; Loganathan, P. Electrochemical micromachining of stainless steel with acidified sodium nitrate electrolyte. Procedia CIRP 2013, 6, 351–355. [Google Scholar] [CrossRef] [Green Version]
- De-Silva, A.K.M.; Altena, H.S.J.; McGeough, J.A. Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann. Manuf. Technol. 2013, 52, 165–168. [Google Scholar] [CrossRef]
- Ayyappan, S.; Sivakumar, K. Experimental investigation on the performance improvement of electrochemical machining process using oxygen-enriched electrolyte. Int. J. Adv. Manuf. Technol. 2014, 75, 479–487. [Google Scholar] [CrossRef]
- Huaiqian, B.; Jiawen, X.; Ying, L. Aviation-oriented Micromachining Technology Micro-ECM in pure Water. Chin. J. Aeronaut. 2008, 218, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, N.; Ito, Y.; Natsu, W. Electrochemical Machining of Tungsten Carbide Alloy Micro-pin with NaNO3 Solution. Int. J. Precis. Eng. Manuf. 2012, 13, 2075–2078. [Google Scholar] [CrossRef]
- Tang, L.; Yang, S. Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization. Int. J. Adv. Manuf. Technol. 2013, 67, 2909–2916. [Google Scholar] [CrossRef]
- Geethapriyan, T.; Muthuramalingam, T.; Moiduddin, K.; Mian, S.M.; Alkhalefah, H.; Umer, U. Performance Analysis of Electrochemical Micro Machining of Titanium (Ti-6Al-4V) Alloy under Different Electrolytes Concentrations. Materials 2021, 11, 247. [Google Scholar]
- Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T. Multi Performance Optimization of Electrochemical Micro-Machining Process Surface Related Parameters on Machining Inconel 718 using Taguchi-grey relational analysis. Metall. Ital. 2016, 4, 13–19. [Google Scholar]
- Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T. Influence of coated tool electrode on drilling Inconel alloy 718 in Electrochemical micro machining. Procedia CIRP 2016, 46, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Muthuramalingam, T.; Akash, R.; Krishnan, S.; Phan, N.H.; Pi, V.N.; Elsheikh, A.H. Surface quality measures analysis and optimization on machining titanium alloy using CO2 based Laser beam drilling process. J. Manuf. Process. 2021, 62, 1–6. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Moiduddin, K.; Akash, R.; Krishnan, S.; Mian, S.H.; Ameen, W.; Alkhalefah, H. Influence of process parameters on dimensional accuracy of machined Titanium (Ti-6Al-4V) alloy in Laser Beam Machining Process. Opt. Laser. Technol. 2020, 132, 106494. [Google Scholar] [CrossRef]
- Kirchner, V.; Cagnon, L.; Schuster, R.; Etrl, G. Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Appl. Phys. Lett. 2008, 79, 1721–1723. [Google Scholar] [CrossRef] [Green Version]
- Spieser, A.; Ivanov, A. Recent developments and research challenges in electrochemical micromachining (μECM). Int. J. Adv. Manuf. Technol. 2013, 69, 563–581. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Zhu, D.; McGeough, J.A.; Kozak, J.; Silva, A.D. New developments in electro-chemical machining. CIRP Ann. 1999, 48, 567–579. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Ramamurthy, A.; Sridharan, K.; Ashwin, S. Analysis of surface performance measures on WEDM processed titanium alloy with coated electrodes. Mater. Res. Express. 2018, 5, 126503. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Zhu, D.; Wei, B. Minimization of machining allowance in electrochemical machining. CIRP Ann. 1998, 47, 165–168. [Google Scholar] [CrossRef]
- Kozak, J.; Rajurkar, K.P.; Makkar, Y. Study of pulse electrochemical micromachining. J. Manuf. Proc. 2004, 6, 7–14. [Google Scholar] [CrossRef]
- Davydov, A.D.; Kabanova, T.B.; Volgin, V.M. Electrochemical machining of titanium. Review. Russ. J. Electrochem. 2017, 53, 941–965. [Google Scholar] [CrossRef]
- Geethapriyan, T.; Muthuramalingam, T.; Kalaichelvan, K. Influence of Process Parameters on Machinability of Inconel 718 by Electrochemical Micromachining Process using TOPSIS Technique. Arab. J. Sci. Eng. 2019, 44, 7945–7955. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Ramamurthy, A.; Moiduddin, K.; Alkindi, M.; Ramalingam, S.; Alghamdi, O. Enhancing the Surface Quality of Micro Titanium Alloy Specimen in WEDM Process by Adopting TGRA-Based Optimization. Materials 2020, 13, 1440. [Google Scholar]
- Senthilkumar, C.; Ganesan, G.; Karthikeyan, R. Study of electrochemical machining characteristics of Al/SiCp composites. Int. J. Adv. Manuf. Technol. 2009, 43, 256–263. [Google Scholar] [CrossRef]
- Geethapriyan, T.; Kalaichelvan, K.; Jothilingam, A. A Study on Investigating the Effect of various Electrolyte in Electrochemical Machining. Int. J. Appl. Eng. Res. 2015, 10, 15239–15243. [Google Scholar]
- Mingcheng, G.; Yongbin, Z.; Lingchao, M. Electrochemical Micromachining of Square Holes in Stainless Steel in H2SO4. Int. J. Electrochem. Sci. 2019, 14, 414–426. [Google Scholar] [CrossRef]
- Saxena, K.K.; Qian, J.; Reynaerts, D. A review on process capabilities of electrochemical micromachining and its hybrid variants. Int. J. Mach. Tool. Manuf. 2018, 127, 28–56. [Google Scholar] [CrossRef]
- Thakur, A.; Tak, M.; Mote, R.G. Electrochemical micromachining behavior on 17-4 PH stainless steel using different electrolytes. Procedia Manuf. 2019, 34, 355–361. [Google Scholar] [CrossRef]
- Leese, R.J.; Ivanov, A. Electrochemical micromachining: An introduction. Adv. Mech. Eng. 2016, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T.; Rajadurai, A. Performance Analysis of Process Parameters on Machining α-β Titanium Alloy in Electrochemical Micromachining Process. Proc. Inst. Mech. E. Part B J. Eng. Manuf. 2018, 232, 1577–1589. [Google Scholar] [CrossRef]
- Tang, L.; Li, B.; Yang, S.; Duan, Q.; Kang, B. The effect of electrolyte current density on the electrochemical machining S-03 material. Int. J. Adv. Manuf. Technol. 2014, 71, 1825–1833. [Google Scholar] [CrossRef]
- Chun, K.H.; Kim, S.H.; Lee, E.S. Analysis of the relationship between electrolyte characteristics and electrochemical machinability in PECM on invar (Fe-Ni) fine sheet. Int. J. Adv. Manuf. Technol. 2016, 87, 3009–3017. [Google Scholar] [CrossRef]
Beta Titanium Alloy Workpiece | |
Elements | Composition (%) |
Iron (Fe) | 0.23 |
Aluminum (Al) | 3.01 |
Vanadium (V) | 2.19 |
Titanium (Ti) | 94.65 |
Stainless Steel 316l Tool electrode | |
Carbon | 0.03 |
Manganese | 2.00 |
Phosphorus | 0.045 |
Sulfur | 0.03 |
Silicon | 0.75 |
Chromium | 18.00 |
Nickel | 14.00 |
Molybdenum | 3.00 |
Nitrogen | 0.10 |
Iron | 62.045 |
Input Parameters | Level 1 | Level 2 |
---|---|---|
Applied voltage (V) | 15 | 17 |
Electrolytic concentration (mol/L) | 1—NaNO3 | 1—NaNO3 |
0—Sodium Citrate | 0.02—Sodium Citrate | |
Duty cycle (%) | 50 | 66 |
S.No. | Voltage (V) | Concentration (Mol/L) | Duty Ratio (%) | MRR (g/hrs) | ||
---|---|---|---|---|---|---|
Sodium Nitrate | Sodium Citrate | Bare Tool | Additive Tool | |||
1 | 15 | 1 | 0 | 50 | 0.00133 | 0.00533 |
2 | 15 | 1 | 0.02 | 66 | 0.004 | 0.006 |
3 | 17 | 1 | 0 | 66 | 0.002 | 0.012 |
4 | 17 | 1 | 0.02 | 50 | 0.006 | 0.008 |
Trials | Circularity by Bare Tool (μm) | Circularity by Additive Tool (μm) |
---|---|---|
1 | 67.19 | 17.53 |
2 | 40.21 | 0.59 |
3 | 2.39 | 0.87 |
4 | 19.43 | 0.58 |
Trials | Overcut by Bare Tool (μm) | Overcut by Additive Tool (μm) |
---|---|---|
1 | 25.5525 | 17.6575 |
2 | 21.29 | 16.4875 |
3 | 5.4175 | 4.7375 |
4 | 18.2725 | 9.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, R.; Ramoni, M.; Thangamani, G.; Thangaraj, M. Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy. Metals 2021, 11, 778. https://doi.org/10.3390/met11050778
Shanmugam R, Ramoni M, Thangamani G, Thangaraj M. Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy. Metals. 2021; 11(5):778. https://doi.org/10.3390/met11050778
Chicago/Turabian StyleShanmugam, Ragavanantham, Monsuru Ramoni, Geethapriyan Thangamani, and Muthuramalingam Thangaraj. 2021. "Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy" Metals 11, no. 5: 778. https://doi.org/10.3390/met11050778
APA StyleShanmugam, R., Ramoni, M., Thangamani, G., & Thangaraj, M. (2021). Influence of Additive Manufactured Stainless Steel Tool Electrode on Machinability of Beta Titanium Alloy. Metals, 11(5), 778. https://doi.org/10.3390/met11050778