Observation of a Broadened Magnetocaloric Effect in Partially Crystallized Gd60Co40 Amorphous Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sturctural and Thermal Characterization
3.2. Multi-Magnetic Phase Transition
3.3. Magnetocaloric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco, V.; Blazquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramirez, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. Magnetocaloric Effect and Its Applications; IOP Publishing Ltd.: London, UK, 2003; pp. 14–17. [Google Scholar]
- Gomez, J.R.; Garcia, R.F.; Catoira, A.D.; Gomez, M.R. Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration. Renew. Sust. Energ. Rev. 2013, 17, 74–82. [Google Scholar] [CrossRef]
- Pecharsky, V.; Gschneidner, K.; Pecharsky, A.; Tishin, A. Thermodynamics of the magnetocaloric effect. Phys. Rev. B 2001, 64, 144406. [Google Scholar] [CrossRef]
- Rashid, T.P.; Nallamuthu, S.; Arun, K.; Curlik, I.; Ilkovic, S.; Dzubinska, A.; Reiffers, M.; Nagalakshmi, R. Magnetocaloric effect over a wide temperature range due to multiple magnetic transitions in GdNi0.8Al1.2 alloy. Eur. Phys. J. Plus 2016, 131, 156. [Google Scholar] [CrossRef]
- Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A., Jr.; Moorman, J.O. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle. Appl. Phys. Lett. 1994, 64, 2739–2741. [Google Scholar] [CrossRef]
- Ma, L.Y.; Gan, L.H.; Chan, K.C.; Ding, D.; Xia, L. Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids. J. Alloy. Compd. 2017, 723, 197–200. [Google Scholar] [CrossRef]
- Zhong, X.C.; Shen, X.Y.; Mo, H.Y.; Jiao, D.L.; Liu, Z.W.; Qiu, W.Q.; Zhang, H.; Ramanujan, R.V. Table-like magnetocaloric effect and large refrigerant capacity in Gd65Mn25Si10-Gd composite materials for near room temperature refrigeration. Mater. Today Commun. 2018, 14, 22–26. [Google Scholar] [CrossRef]
- Tian, H.C.; Zhong, X.C.; Liu, Z.W.; Zheng, Z.G.; Min, J.X. Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x = 0–10) composite materials. Mater. Lett. 2015, 138, 64–66. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kuzuhara, T.; Sahashi, M.; Inomata, K.; Tomokiyo, A.; Yayama, H. New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator. J. Appl. Phys. 1987, 62, 3873. [Google Scholar] [CrossRef]
- Shen, X.Y.; Zhong, X.C.; Huang, X.W.; Mo, H.Y.; Feng, X.L.; Liu, Z.W.; Jiao, D.L. Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase Gd65Mn25Si10 alloys obtained by crystallization treatment. J. Phys. D Appl. Phys. 2017, 50, 035005. [Google Scholar] [CrossRef]
- Law, J.Y.; Moreno-Ramírez, L.M.; Blázquez, J.S.; Franco, V.; Conde, A. Gd+GdZn biphasic magnetic composites synthesized in a single preparation step: Increasing refrigerant capacity without decreasing magnetic entropy change. J. Alloy. Compd. 2016, 675, 244–247. [Google Scholar] [CrossRef]
- Fu, H.; Ma, Z.; Zhang, X.J.; Wang, D.H.; Teng, B.H.; Agurgo Balfour, E. Table-like magnetocaloric effect in the Gd-Co-Al alloys with multi-phase structure. Appl. Phys. Lett. 2014, 104, 072401. [Google Scholar]
- Mo, H.Y.; Zhong, X.C.; Jiao, D.L.; Liu, Z.W.; Zhang, H.; Qiu, W.Q.; Ramanujan, R.V. Table-like magnetocaloric effect and enhanced refrigerant capacity in crystalline Gd55Co35Mn10 alloy melt spun ribbons. Phys. Lett. A 2018, 382, 1679–1684. [Google Scholar] [CrossRef]
- Zhong, X.; Tang, P.; Gao, B.; Min, J.; Liu, Z.; Zheng, Z.; Zeng, D.; Yu, H.; Qiu, W. Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons. Sci. China Phys. Mech. 2013, 56, 1096–1099. [Google Scholar] [CrossRef]
- Balfour, E.A.; Ma, Z.; Fu, H.; Hadimani, R.L.; Jiles, D.C.; Wang, L.; Luo, Y.; Wang, S.F. Table-like magnetocaloric effect in Gd56Ni15Al27Zr2 alloy and its field independence feature. J. Appl. Phys. 2015, 118, 123903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Ouyang, J.T.; Ding, D.; Li, H.L.; Wang, J.G.; Li, W.H. Influence of Fe substitution on thermal stability and magnetocaloric effect of Gd60Co40-xFex amorphous alloy. J. Alloy. Compd. 2018, 769, 186–192. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Zhong, X.C.; Yu, H.Y.; Franco, V.; Liu, Z.W.; Zeng, D.C. The magnetocaloric effect and critical behavior in amorphous Gd60Co40-xMnx alloys. J. Appl. Phys. 2012, 111, 07A922. [Google Scholar] [CrossRef]
- Foldeaki, M.; Giguere, A.; Gopal, B.R.; Chahine, R.; Bose, T.K.; Liu, X.Y.; Barclay, J.A. Composition dependence of magnetic properties in amorphous rare-earth-metalbased alloys. J. Magn. Magn. Mater. 1997, 174, 295–308. [Google Scholar] [CrossRef]
- Liu, G.L.; Zhao, D.Q.; Bai, H.Y.; Wang, W.H.; Pan, M.X. Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J. Phys. D Appl. Phys. 2016, 49, 055004. [Google Scholar] [CrossRef]
- Zhong, X.C.; Gao, B.B.; Liu, Z.W.; Zheng, Z.G.; Zeng, D.C. Amorphous and crystallized (Gd4Co3)100−xBx alloys for magnetic refrigerants working in the vicinity of 200 K. J. Alloy. Compd. 2013, 553, 152–156. [Google Scholar] [CrossRef]
- Shishkin, D.A.; Baranov, N.V.; Volegov, A.S.; Gaviko, V.S. Substitution and liquid quenching effects on magnetic and magnetocaloric properties of (Gd1-xTbx)12Co7. Solid State Sci. 2016, 52, 92–96. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yu, P.; Cui, Y.T.; Xia, L. Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy. J. Alloy. Compd. 2016, 658, 598–602. [Google Scholar] [CrossRef]
- Shishkin, D.A.; Gazizov, A.I.; Volegov, A.S.; Gaviko, V.S.; Baranov, N.V. Magnetic properties and magnetocaloric effect of melt-spun Gd75(Co1−xFex)25 alloys. J. Non Cryst. Solids 2017, 478, 12–15. [Google Scholar] [CrossRef]
- Bao, Y.; Shen, H.; Xing, D.; Jiang, S.; Sun, J.; Phan, M.-H. Enhanced Curie temperature and cooling efficiency in melt-extracted Gd50(Co69.25Fe4.25Si13B13.5)50 microwires. J. Alloy. Compd. 2017, 708, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Duc, N.T.M.; Shen, H.X.; Clements, E.M.; Thiabgoh, O.; Sanchez Llamazares, J.L.; Sanchez-Valdes, C.F.; Huong, N.T.; Sun, J.F.; Srikanth, H.; Phan, M.H. Enhanced refrigerant capacity and Curie temperature of amorphous Gd60Fe20Al20 microwires. J. Alloy. Compd. 2019, 807, 151694. [Google Scholar] [CrossRef]
- Baker, H.; Okamoto, H. Alloy Phase Diagrams, 1st ed.; ASM International: Novelty, OH, USA, 1992. [Google Scholar]
- Álvarez, P.; Gorria, P.; Sanchez Llamazares, J.L.; Blanco, J.A. Searching the conditions for a table-like shape of the magnetic entropy in magneto-caloric materials. J. Alloy. Compd. 2013, 568, 98–101. [Google Scholar] [CrossRef]
- Caballero-Flores, R.; Franco, V.; Conde, A.; Knipling, K.E.; Willard, M.A. Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl. Phys. Lett. 2011, 98, 102505. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.G.; Sun, J.R.; Hu, F.X.; Zhang, H.W.; Cheng, Z.H. Recent progress in exploring magnetocaloric materials. Adv. Mater. 2009, 21, 4545–4564. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Xie, L.; Liu, C.; Li, Q.; Huo, J.; Chang, C.; Li, H.; Ma, X. Effect of Co/Ni substituting Fe on magnetocaloric properties of Fe-based bulk metallic glasses. Metals 2021, 11, 950. [Google Scholar] [CrossRef]
- Tatchev, D.; Vassilev, T.; Goerigk, G.; Armyanov, S.; Kranold, R. Kinetics of primary crystallization of hypoeutectic amorphous Ni–P alloy studied by in situ ASAXS and DSC. J. Non Cryst. Solids 2010, 356, 351–357. [Google Scholar] [CrossRef]
- Kusy, M.; Riello, P.; Battezzati, L. A comparative study of primary Al precipitation in amorphous Al87Ni7La5Zr by means of WAXS, SAXS, TEM and DSC techniques. Acta Mater. 2004, 52, 5031–5041. [Google Scholar] [CrossRef]
- Ghosh, J.; Mazumdar, S.; Das, M.; Ghatak, S.; Basu, A.K. Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling. Mater. Res. Bull. 2008, 43, 1023–1031. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Zhong, Z.C.; Greer, A.L. Particle-size effects in primary crystallization of amorphous Al-Ni-Y alloys. Mater. Sci. Eng. A 1997, 226, 789–793. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Zhong, X.C.; Yu, H.Y.; Liu, Z.W.; Zeng, D.C. Magnetic phase transitions and magnetocaloric properties of (Gd12-xTbx)Co7 alloys. J. Appl. Phys. 2011, 109, 07A919. [Google Scholar] [CrossRef]
- Banerjee, S.K. On a generalised approach to first and second order magnetic transitions. Phys. Lett. 1964, 12, 16–17. [Google Scholar] [CrossRef]
- Shand, P.M.; Bohnet, J.G.; Goertzen, J.; Shield, J.E.; Schmitter, D.; Shelburne, G.; Leslie-Pelecky, D.L. Magnetic behavior of melt-spun gadolinium. Phys. Rev. B 2008, 77, 184415. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Li, Y.; Dai, Y.; Xu, Z.; Song, C.; Luo, Z.; Zhai, Q.; Han, K.; Zheng, H. Zn and P alloying effect in sub-rapidly solidified LaFe11.6Si1.4 magnetocaloric plates. Metals 2019, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Franco, V.; Blazquez, J.S.; Ingale, B.; Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef] [Green Version]
- Griffith, L.D.; Mudryk, Y.; Slaughter, J.; Pecharsky, V.K. Material-based figure of merit for caloric materials. J. Appl. Phys. 2018, 123, 034902. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Kuz′min, M.D.; Romero-Enrique, J.M. The magnetocaloric effect in materials with a second order phase transition: Are T-C and T-peak necessarily coincident? J. Appl. Phys. 2009, 105, 07A917. [Google Scholar] [CrossRef]
- Xia, L.; Tang, M.B.; Chan, K.C.; Dong, Y.D. Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass. J. Appl. Phys. 2014, 115, 223904. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A. Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials. Int. J. Refrig. 2010, 33, 465–473. [Google Scholar] [CrossRef]
- Romero-Muñiz, C.; Franco, V.; Conde, A. Influence of magnetic interactions between phases on the magnetocaloric effect of composites. Appl. Phys. Lett. 2013, 102, 082402. [Google Scholar] [CrossRef]
- Alvarez, P.; Llamazares, J.L.S.; Gorria, P.; Blanco, J.A. Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite. Appl. Phys. Lett. 2011, 99, 232501. [Google Scholar] [CrossRef] [Green Version]
- Smaïli, A.; Chahine, R. Composite materials for Ericsson-like magnetic refrigeration cycle. J. Appl. Phys. 1997, 81, 824–829. [Google Scholar] [CrossRef]
Alloys | Structure | TC (K) | ΔTplateau (K) | |ΔSMpk| (J·kg−1·K−1) | ΔTFWHM (K) | RCP (J·kg−1) | References |
---|---|---|---|---|---|---|---|
H = 0.02 T | ΔH = 0–5 T | ||||||
Gd60Co40 (513 K/20 min) | A + C | 196/219 | - | 7.73 | 94 | 726.6 | This Work |
Gd60Co40 (513 K/40 min) | A + C | 174/194/219 | 180–196 | 6.75 | 117 | 789.8 | This Work |
Gd60Co40 (513 K/60 min) | A + C | 176/195/219 | 177–196 | 6.54 | 122 | 797.9 | This Work |
Gd4Co3 | C | 220 | - | 6.4 | 123 | 787.2 | [21] |
Gd60Co40 | A | 193 | - | 8.3 | 86 | 713.8 | [17] |
Gd12Co7 | A + C | 179 | - | 7.9 | - | - | [22] |
Gd60Co25Fe15 | A | 217 | 178–228 | 4.1 | 200 | 820 | [17] |
Gd55Co35Mn10 (600 K/30 min) | A + C | 123/170 | 137–180 | 5.46 | 123 | 671.6 | [14] |
Gd55Co35Ni10 (620 K/30 min) | C | 158/214 | 154–214 | 5.0 | - | - | [15] |
Gd75(Fe0.25Co0.75)25 | A | 194 | - | 5.7 | - | - | [24] |
Gd50(Co69.25Fe4.25Si13B13.5)50 | A | 170 | - | 6.56 | 126 | 826 | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Zhang, Z.; Tan, J.; Zhang, X.; Xu, Y.; Zhang, H.; Li, W. Observation of a Broadened Magnetocaloric Effect in Partially Crystallized Gd60Co40 Amorphous Alloy. Metals 2021, 11, 1741. https://doi.org/10.3390/met11111741
Han P, Zhang Z, Tan J, Zhang X, Xu Y, Zhang H, Li W. Observation of a Broadened Magnetocaloric Effect in Partially Crystallized Gd60Co40 Amorphous Alloy. Metals. 2021; 11(11):1741. https://doi.org/10.3390/met11111741
Chicago/Turabian StyleHan, Ping, Ziyang Zhang, Jia Tan, Xue Zhang, Yafang Xu, Huiyan Zhang, and Weihuo Li. 2021. "Observation of a Broadened Magnetocaloric Effect in Partially Crystallized Gd60Co40 Amorphous Alloy" Metals 11, no. 11: 1741. https://doi.org/10.3390/met11111741
APA StyleHan, P., Zhang, Z., Tan, J., Zhang, X., Xu, Y., Zhang, H., & Li, W. (2021). Observation of a Broadened Magnetocaloric Effect in Partially Crystallized Gd60Co40 Amorphous Alloy. Metals, 11(11), 1741. https://doi.org/10.3390/met11111741