Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite
Abstract
:1. Introduction
1.1. Transitory Internal Friction
- -
- first order structural phase transition in a solid [1]; this transition can be induced by temperature, mechanical stress or any other relevant parameter such as magnetic field;
- -
- plastic or even microplastic deformation of crystals during active deformation, creep or temperature variation in non-cubic polycrystals [2]; external quasistatic stress is coupled then with the oscillatory stress.
1.2. Magnetomechanical Internal Friction
- -
- -
- in ferromagnetic martensites magnetic domain structure and structure of martensitic variants are strongly coupled [15,16,17] due to a high magnetocrystalline anisotropy; hence, variations of martensitic variant structure due to thermal stresses will inevitably produce rearrangement of the magnetic domain structure and, probably, magnetic transitory IF term.
2. Materials and Methods
2.1. Material
2.2. Experimental Method and Protocol
2.3. Samples
3. Results
3.1. Strain Amplitude Dependence
- -
- a very weak non-linearity at low strain amplitudes, below ca. 6 × 10−7 for the increasing strain amplitudes, which transforms into a very steep increase in the IF;
- -
- the high-amplitude part of the dependence is jerky; it shows abrupt changes of the IF and of the strain amplitude;
- -
- a strong difference between direct run (increasing strain amplitudes) and reverse run (decreasing strain amplitude); we will refer to this effect as strain amplitude hysteresis;
- -
- the strain amplitude hysteresis is well reproducible in two consecutive strain amplitude scans: it fully recovers in the second scan.
3.2. Temperature Dependence
- -
- the decline is time dependent;
- -
- the decline is T-dot dependent;
- -
- the decline is a combination of the two abovementioned processes, both time and T-dot dependent.
3.3. T-Dot Dependence
4. Discussion
4.1. Comparison with Previous Results
4.2. Role of a/c and a/b Twins in the Internal Friction and Young’s Modulus Temperature Spectra
- -
- thermal hysteresis of the IF and YM in 10 M martensite is exclusively related to the a/b twins and reflects their non-equilibrium state; the hysteresis is practically absent in the sample with a/c TBs and when shear stress in a/b twinning planes does not exist;
- -
- a/c TB is responsible for the transitory IF peak; the peak is absent in samples without a/c TBs for both orientations of a/b twins.
4.3. Origin of T-Dot and Time Dependence of the Internal Friction
- -
- the overall twin structure of the sample has not been identified in Ref. [22], which was supposedly polyvariant; so TB interaction is expected to substantially inhibit their mutual displacement; in other words, a single TB must be much more mobile than TBs of the polyvariant structure;
- -
- twin boundary shown in Figure 5 of Ref. [22] is of Type I type, much less mobile than Type II TB studied in the present work.
5. Conclusions
- -
- a/c twin boundaries are pinned at and somewhat below room temperature by Cottrell-like clouds of mobile obstacles, whereas a/b twin boundaries are free from pinning clouds;
- -
- the anisotropy of thermal expansion results in the motion of a/c twin boundaries during temperature variations; this displacement provokes, on one hand, local changes of the magnetic flux and T-dot ultrasonic transitory internal friction of magnetic origin; on the other hand, the quasistatic motion of a/c twin boundaries under thermal stresses occurs under conditions similar to dynamic strain ageing, manifested in the time dependence of the internal friction due to the interaction of twin boundaries with Cottrell-like clouds of more or less mobile (depending on the temperature) pinners;
- -
- over a broad temperature range the system of a/b twins is in a highly non-equilibrium state, resulting in a strong history dependence and dramatic variations of the apparent Young’s modulus with temperature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- San Juan, J.; Pérez-Saez, R.B. 5.4 Transitory Effects. Mater. Sci. Forum 2001, 366–368, 416–436. [Google Scholar] [CrossRef]
- Lebedev, A.B. Internal Friction in Quasi-Static Crystal Deformation (Review). Sov. Phys. Solid State 1993, 35, 2305–2341. [Google Scholar]
- Kustov, S.; Golyandin, S.; Sapozhnikov, K.; Vincent, A.; Maire, E.; Lormand, G. Structural and Transient Internal Friction Due to Thermal Expansion Mismatch between Matrix and Reinforcement in Al–SiC Particulate Composite. Mater. Sci. Eng. A 2001, 313, 218–226. [Google Scholar] [CrossRef]
- Sapozhnikov, K.; Golyandin, S.; Kustov, S. Elastic and Anelastic Properties of C/Mg-2wt.%Si Composite during Thermal Cycling. Compos. Part A 2009, 40, 105–113. [Google Scholar] [CrossRef]
- L’vov, V.A.; Glavatska, N.; Aaltio, I.; Söderberg, O.; Glavatskyy, I.; Hannula, S.P. The Role of Anisotropic Thermal Expansion of Shape Memory Alloys in Their Functional Properties. Acta Mater. 2009, 57, 5605–5612. [Google Scholar] [CrossRef]
- Sapozhnikov, K.; Golyandin, S.; Kustov, S.; Van Humbeeck, J.; Schaller, R.; De Batist, R. Transient Internal Friction during Thermal Cycling of Cu-Al-Ni Single Crystals in β1′ Martensitic Phase. Scr. Mater. 2002, 47, 459–465. [Google Scholar] [CrossRef]
- Sapozhnikov, K.; Golyandin, S.; Kustov, S.; Schaller, R.; Van Humbeeck, J. Anelasticity of B19′ Martensitic Phase in Ni-Ti and Ni-Ti-Cu Alloys. Mater. Sci. Eng. A 2006, 442, 398–403. [Google Scholar] [CrossRef]
- Coronel, V.F.; Beshers, D.N. Magnetomechanical Damping in Iron. J. Appl. Phys. 1988, 64, 2006–2015. [Google Scholar] [CrossRef]
- Degauque, J. Magnetic Domains. In Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science; Schaller, R., Fantozzi, G., Gremaud, G., Eds.; Trans Tech Publications: Uetikon, Zuerich, 2001; pp. 453–482. [Google Scholar]
- Kustov, S.; Corró, M.L.; Kaminskii, V.; Saren, A.; Sozinov, A.; Ullakko, K. Elastic and Anelastic Phenomena Related to Eddy Currents in Cubic Ni2MnGa. Scr. Mater. 2018, 147, 69–73. [Google Scholar] [CrossRef]
- Birchak, J.R.; Smith, G.W. Magnetomechanical Damping and Magnetic Properties of Iron Alloys. J. Appl. Phys. 1972, 43, 1238–1246. [Google Scholar] [CrossRef]
- Mason, W.P. Domain Wall Relaxation in Nickel. Phys. Rev. 1951, 83, 683–684. [Google Scholar] [CrossRef]
- Kustov, S.; Liubimova, I.; Corró, M.; Torrens-Serra, J.; Wang, X.; Haines, C.R.S.; Salje, E.K.H. Temperature Chaos, Memory Effect, and Domain Fluctuations in the Spiral Antiferromagnet Dy. Sci. Rep. 2019, 9, 5076. [Google Scholar] [CrossRef]
- Transitory damping stems from the superposition of oscillatory and translatory motion of magnetic domain walls. A theoretical solution for the magnetic transitory damping yields a superposition of two terms: Frequency-independent and the one that shows conventional inverse frequency dependence, to be published.
- Likhachev, A.A.; Sozinov, A.; Ullakko, K. Different Modeling Concepts of Magnetic Shape Memory and Their Comparison with Some Experimental Results Obtained in Ni-Mn-Ga. Mater. Sci. Eng. A 2004, 378, 513–518. [Google Scholar] [CrossRef]
- Fukuda, T.; Sakamoto, T.; Kakeshita, T.; Takeuchi, T.; Kishio, K. Rearrangement of Martensite Variants in Iron-Based Ferromagnetic Shape Memory Alloys under Magnetic Field. Mater. Trans. 2004, 45, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Chernenko, V.A.; L’vov, V.A. Magnetoelastic Nature of Ferromagnetic Shape Memory Effect. Mater. Sci. Forum 2008, 583, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rolfs, K.; Mecklenburg, A.; Guldbakke, J.M.; Wimpory, R.C.; Raatz, A.; Hesselbach, J.; Schneider, R. Crystal Quality Boosts Responsiveness of Magnetic Shape Memory Single Crystals. J. Mag. Mag. Mater. 2009, 321, 1063–1067. [Google Scholar] [CrossRef]
- Straka, L.; Lanska, N.; Ullakko, K.; Sozinov, A. Twin Microstructure Dependent Mechanical Response in Ni-Mn-Ga Single Crystals. Appl. Phys. Lett. 2010, 96, 131903. [Google Scholar] [CrossRef]
- Sozinov, A.; Lanska, N.; Soroka, A.; Straka, L. Highly Mobile Type II Twin Boundary in Ni-Mn-Ga Five-Layered Martensite. Appl. Phys. Lett. 2011, 99, 124103. [Google Scholar] [CrossRef]
- Seiner, H.; Straka, L.; Heczko, O. A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10M martensite. J. Mech. Phys. Sol. 2014, 64, 198–211. [Google Scholar] [CrossRef]
- Straka, L.; Drahokoupil, J.; Veřtát, P.; Zelený, M.; Kopeček, J.; Sozinov, A.; Heczko, O. Low Temperature a/b Nanotwins in Ni50Mn25+xGa25−x Heusler Alloys. Sci. Rep. 2018, 8, 11943. [Google Scholar] [CrossRef]
- Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large Magnetic-field-induced Strains in Ni2MnGa Single Crystals. Appl. Phys. Lett. 1996, 69, 1966–1968. [Google Scholar] [CrossRef]
- Aaltio, I.; Sozinov, A.; Ge, Y.; Ullakko, K.; Lindroos, V.K.; Hannula, S.-P. Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2016; pp. 1–14. [Google Scholar]
- Lanska, N.; Söderberg, O.; Sozinov, A.; Ge, Y.; Ullakko, K.; Lindroos, V.K. Composition and Temperature Dependence of the Crystal Structure of Ni-Mn-Ga Alloys. J. Appl. Phys. 2004, 95, 8074–8078. [Google Scholar] [CrossRef] [Green Version]
- Chulist, R.; Straka, L.; Lanska, N.; Soroka, A.; Sozinov, A.; Skrotzki, W. Characterization of Mobile Type i and Type II Twin Boundaries in 10M Modulated Ni-Mn-Ga Martensite by Electron Backscatter Diffraction. Acta Mater. 2013, 61, 1913–1920. [Google Scholar] [CrossRef]
- Heczko, O.; Klimša, L.; Kopeček, J. Direct Observation of A-b Twin Laminate in Monoclinic Five-Layered Martensite of Ni-Mn-Ga Magnetic Shape Memory Single Crystal. Scr. Mater. 2017, 131, 76–79. [Google Scholar] [CrossRef]
- Saren, A.; Sozinov, A.; Kustov, S.; Ullakko, K. Stress-Induced a/b Compound Twins Redistribution in 10M Ni-Mn-Ga Martensite. Scr. Mater. 2020, 175, 11–15. [Google Scholar] [CrossRef]
- Robinson, W.H.; Edgar, A. The Piezoelectric Method of Determining Mechanical Damping at Frequencies of 30 to 200 KHz. IEEE Trans. Sonics Ultrason. 1974, 21, 98–105. [Google Scholar] [CrossRef]
- Kustov, S.; Golyandin, S.; Ichino, A.; Gremaud, G. A New Design of Automated Piezoelectric Composite Oscillator Technique. Mater. Sci. Eng. A 2006, 442, 532–537. [Google Scholar] [CrossRef]
- Read, T.A. The Internal Friction of Single Metal Crystals. Phys. Rev. 1940, 58, 371–380. [Google Scholar] [CrossRef]
- Salje, E.K.H. Multiferroic Domain Boundaries as Active Memory Devices: Trajectories towards Domain Boundary Engineering. Chem. Phys. Chem. 2010, 11, 940–950. [Google Scholar] [CrossRef]
- Kustov, S.; Saren, A.; Sozinov, A.; Kaminskii, V.; Ullakko, K. Ultrahigh Damping and Young’s Modulus Softening Due to a/b Twins in 10M Ni-Mn-Ga Martensite. Scr. Mater. 2020, 178, 483–488. [Google Scholar] [CrossRef]
- Kustov, S.; Liubimova, I.; Salje, E.K.H. LaAlO3: A Substrate Material with Unusual Ferroelastic Properties. Appl. Phys. Lett. 2018, 112, 042902. [Google Scholar] [CrossRef]
- Kustov, S.; Golyandin, S.; Sapozhnikov, K.; Van Humbeeck, J.; de Batist, R. Low-Temperature Anomalies in Young’s Modulus and Internal Friction of Cu–Al–Ni Single Crystals. Acta Mater. 1998, 46, 5117–5126. [Google Scholar] [CrossRef]
- Sapozhnikov, K.; Golyandin, S.; Kustov, S.; Van Humbeeck, J.; de Batist, R. Motion of Dislocations and Interfaces during Deformation of Martensitic Cu–Al–Ni Crystals. Acta Mater. 2000, 48, 1141–1151. [Google Scholar] [CrossRef]
- Kustov, S.; Sapozhnikov, K.; Wang, X. Phenomena Associated with Diffusion, Assisted by Moving Interfaces in Shape Memory Alloys. A review of our Previous Works. Funct. Mater. Lett. 2017, 10, 1740010. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Seguí, C.; Cesari, E.; Pons, J.; Kokorin, V.V. Sequence of Martensitic Transformations in Ni-Mn-Ga Alloys. Phys. Rev. B 1998, 57, 2659–2662. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, J.; Jiang, C.; Xu, H. Internal Friction Associated with the Premartensitic Transformation and Twin Boundary Motion of Ni50+xMn25−xGa25 (x=0–2) Alloys. J. Appl. Phys. 2013, 113, 103502. [Google Scholar] [CrossRef]
- Chang, S.H.; Wu, S.K. Low-Frequency Damping Properties of near-Stoichiometric Ni2MnGa Shape Memory Alloys under Isothermal Conditions. Scr. Mater. 2008, 59, 1039–1042. [Google Scholar] [CrossRef]
- Wang, W.H.; Liu, G.D.; Wu, G.H. Magnetically Controlled High Damping in Ferromagnetic Ni52Mn24Ga24 Single Crystal. Appl. Phys. Lett. 2006, 89, 101911. [Google Scholar] [CrossRef]
- Wang, W.H.; Ren, X.; Wu, G.H. Martensitic Microstructure and Its Damping Behavior in Ni52Mn16Fe8Ga24 Single Crystals. Phys. Rev. B 2006, 73, 092101. [Google Scholar] [CrossRef] [Green Version]
- Gavriljuk, V.G.; Söderberg, O.; Bliznuk, V.V.; Glavatska, N.I.; Lindroos, V.K. Martensitic transformations and mobility of twin boundaries in Ni2MnGa alloys studied by using internal friction. Scr. Mater. 2003, 49, 803–809. [Google Scholar] [CrossRef]
- Chopra, H.D.; Ji, C.; Kokorin, V.V. Magnetic-Field-Induced Twin Boundary Motion in Magnetic Shape-Memory Alloys. Phys. Rev. B 2000, 61, R14913–R14915. [Google Scholar] [CrossRef]
- Gremaud, G. Dislocation-point defect interactions. In Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science; Schaller, R., Fantozzi, G., Gremaud, G., Eds.; Trans Tech Publications: Ueticon, Zuerich, 2001; pp. 178–246. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kustov, S.; Saren, A.; D’Agosto, B.; Sapozhnikov, K.; Nikolaev, V.; Ullakko, K. Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite. Metals 2021, 11, 1505. https://doi.org/10.3390/met11101505
Kustov S, Saren A, D’Agosto B, Sapozhnikov K, Nikolaev V, Ullakko K. Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite. Metals. 2021; 11(10):1505. https://doi.org/10.3390/met11101505
Chicago/Turabian StyleKustov, Sergey, Andrey Saren, Bruno D’Agosto, Konstantin Sapozhnikov, Vladimir Nikolaev, and Kari Ullakko. 2021. "Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite" Metals 11, no. 10: 1505. https://doi.org/10.3390/met11101505
APA StyleKustov, S., Saren, A., D’Agosto, B., Sapozhnikov, K., Nikolaev, V., & Ullakko, K. (2021). Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite. Metals, 11(10), 1505. https://doi.org/10.3390/met11101505