Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Welding Process
3.2. Tensile Properties
3.3. Hardness
3.4. Microstructure
3.5. Fracture
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wona, S.; Seoa, B.; Parka, J.M.; Kim, H.K.; Song, K.H.; Min, S.-H.; Ha, T.K.; Park, K. Corrosion behaviors of friction welded dissimilar aluminum alloys. Mater. Charact. 2018, 144, 652–660. [Google Scholar] [CrossRef]
- Monazzah, A.H.; Pouraliakbar, H.; Bagheri, R.; Reihani, S.S. Toughness behavior in roll-bonded laminates based on AA6061/SiCp composites. Mater. Sci. Eng. A 2014, 598, 162–173. [Google Scholar] [CrossRef]
- Monazzah, A.H.; Bagheri, R.; Reihani, S.S.; Pouraliakbar, H. Toughness enhancement in architecturally modified Al6061-5 vol.% SiCp laminated composites. Int. J. Damage Mech. 2014, 24, 245–262. [Google Scholar] [CrossRef]
- Monazzah, A.H.; Pouraliakbar, H.; Bagheri, R.; Reihani, S.M.S. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Compos. Part B Eng. 2017, 125, 49–70. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Nazari, A.; Fataei, P.; Livary, A.K.; Jandaghi, M. Predicting Charpy impact energy of A16061/SiCp laminated nanocomposites in crack divider and crack arrester forms. Ceram. Int. 2013, 39, 6099–6106. [Google Scholar] [CrossRef]
- Karunakaran, N. Effect of Pulsed Current on Temperature distribution and characteristics of GTA welded magnesium alloy. IOSR J. Mech. Civ. Eng. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Najiha, M.S.; Rahman, M.M.; Kamal, M.; Yusoff, A.R.; Kadirgama, K. Minimum quantity lubricant flow analysis in end milling processes: A computational fluid dynamics approach. J. Mech. Eng. Sci. 2012, 3, 340–345. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Crispim, B.; Zeng, Z.; Omori, T.; Braz Fernandes, F.M.; Miranda, R.M. Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods. J. Mater. Process. Technol. 2019, 271, 93–100. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Schell, N.; Zhou, N.; Wood, L.; Benafan, O. Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: Microstructure and mechanical properties. Mater. Des. 2019, 162, 229–234. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Hamedi, M.; Kokabi, A.H.; Nazari, A. Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds. Mater. Res. 2014, 17, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Golezani, A.S.; Barenji, R.V.; Heidarzadeh, A.; Pouraliakbar, H. Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. Int. J. Adv. Manuf. Technol. 2015, 81, 1155–1164. [Google Scholar] [CrossRef]
- Acherjee, B. Hybrid laser arc welding: State-of-art review. Opt. Laser Technol. 2018, 99, 60–71. [Google Scholar] [CrossRef]
- Wang, Z.M.; Oliveira, J.P.; Zeng, Z.; Bu, X.Z.; Peng, B.; Shao, X.Y. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 2019, 111, 58–65. [Google Scholar] [CrossRef]
- Khorrami, M.S.; Mostafaei, M.A.; Pouraliakbar, H.; Kokabi, A.H. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints. Mater. Sci. Eng. A 2014, 608, 35–45. [Google Scholar] [CrossRef]
- David, S.A.; Babu, S.S.; Vitek, J.M. Welding: Solidification and microstructure. JOM 2003, 55, 14–20. [Google Scholar] [CrossRef]
- Khalaj, G.; Pouraliakbar, H.; Jandaghi, M.R.; Gholami, A. Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical properties enhancement. Int. J. Press. Vessel. Pip. 2017, 152, 15–26. [Google Scholar] [CrossRef]
- LH, S.; AR, R. Investigation of aluminum-stainless steel dissimilar weld quality using different filler metals. Int. J. Automot. Mech. Eng. (IJAME) 2013, 8, 1121–1131. [Google Scholar]
- Ahmad, R.; Bakar, M.A. Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater. Des. 2011, 32, 5120–5126. [Google Scholar] [CrossRef]
- Kulekci, M.K.; Kaluç, E.; Sik, A.; Basturk, O. Experimetal Comparison of MIG and Friction Stir Welding Processes for En AW-6061-T6 (Al Mg-1 Si Cu) Aluminium Alloy. Arab. J. Sci. Eng. 2010, 35, 322. [Google Scholar]
- Narsimhachary, D.; Bathe, R.N.; Padmanabham, G.; Basu, A. Influence of temperature profile during laser welding of aluminum alloy 6061 T6 on microstructure and mechanical properties. Mater. Manuf. Process. 2014, 29, 948–953. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, M.; Zeng, X. Effect of microstructural characteristics on high cycle fatigue properties of laser-arc hybrid welded AA6082 aluminum alloy. J. Mater. Process. Technol. 2016, 231, 479–487. [Google Scholar] [CrossRef]
- Dewan, M.W.; Okeil, A.M. Influence of Weld Defects and Post-Weld Heat Treatment (PWHT) of Gas Tungsten Arc (GTA)-Welded AA-6061-T651 Aluminum Alloy. J. Manuf. Sci. Eng. 2015, 137. [Google Scholar] [CrossRef]
- Peng, D.; Shen, J.; Tang, Q.; Wu, C.-p.; Zhou, Y.-b. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints. Int. J. Miner. Metall. Mater. 2013, 20, 259–265. [Google Scholar] [CrossRef]
- Elangovan, K.; Balasubramanian, V. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater. Charact. 2008, 59, 1168–1177. [Google Scholar] [CrossRef]
- Song, G.; Li, T.; Chen, L. Interface bonding mechanism of immiscible Mg/steel by butt fusion welding with filler wire. Mater. Sci. Eng. A 2018, 736, 306–315. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H. Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy. Mater. Sci. Eng. A 2017, 679, 493–503. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Jandaghi, M.R.; Baygi, S.J.M.; Khalaj, G. Microanalysis of crystallographic characteristics and structural transformations in SPDed Al Mn Si alloy by dual-straining. J. Alloys Compd. 2017, 696, 1189–1198. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H.; Khalaj, G.; Khalaj, M.-J.; Heidarzadeh, A. Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy. Arch. Civ. Mech. Eng. 2016, 16, 876–887. [Google Scholar] [CrossRef]
- Myhr, O.R.; Grong, Ø. Process modelling applied to 6082-T6 aluminium weldments—I. Reaction kinetics. Acta Metall. Mater. 1991, 39, 2693–2702. [Google Scholar] [CrossRef]
- Hu, B.; Richardson I, M. Microstructure and mechanical properties of AA7075 (T6) hybrid laser/GMA welds. Mater. Sci. Eng. A 2007, 459, 94–100. [Google Scholar] [CrossRef]
- Moor, P.L.; Howse, D.S.; Wallach, E.R. Development of Nd: YAG laser and laser/MAG hybrid welding for land pipeline application. Weld. Cut. 2004, 3, 174–180. [Google Scholar]
Elements | Mg | Si | Fe | Zn | Cu | Al |
---|---|---|---|---|---|---|
6061-T6 (BM) | 1.00 | 0.55 | 0.36 | 0.01 | 0.26 | Bal |
ER5356 (filler wire) | 5.10 | 0.20 | 0.20 | 0.10 | 0.01 | Bal |
Material | Ultimate Tensile Strength (MPa) | Elongation (%) | Vickers Hardness (Hv) |
---|---|---|---|
6061-T6 (BM) | 340 | 19 | 115 |
Arc Current (A) | Average Laser Power (W) | Welding Speed (mm·min−1) | Pulse Repetition Rate (Hz) | Peak Power (W) |
---|---|---|---|---|
100–150 | 800–1000 | 500–700 | 40 | 6000~8500 |
β (°) | h (mm) | d (mm) | α (°) | Dla (mm) |
50 | 1.5 | 1.5 | 45 | 2 |
Arc Current (A) | Average Laser Power (W) | Welding Speed (mm·Min−1) | Pulse Repetition Rate (Hz) | Pulse Peak Power (W) | Filler Speed m/Min |
---|---|---|---|---|---|
150 | 900 | 600 | 40 | 8000 | 2 |
Joints | Ultimate Tensile Strength (MPa) | Elongation (%) | Joint Efficiency (%) | Fracture Positions of Tensile Specimens |
---|---|---|---|---|
BM | 330~340 | 18.7~19.4 | 100 | BM |
HW | 230~240 | 14.30~15.71 | 66.8~70.8 | HAZ |
AW (155 °C, 8 h) | 235~245 | 13.8~16.1 | 71.2~74.2 | HAZ |
STA (520 °C) | 283~288 | 19.01~22.02 | 83.2~87 | FZ (Fusion zone) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, X.; Liu, L. Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment. Metals 2020, 10, 130. https://doi.org/10.3390/met10010130
Wang H, Liu X, Liu L. Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment. Metals. 2020; 10(1):130. https://doi.org/10.3390/met10010130
Chicago/Turabian StyleWang, Hongyang, Xiaohong Liu, and Liming Liu. 2020. "Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment" Metals 10, no. 1: 130. https://doi.org/10.3390/met10010130
APA StyleWang, H., Liu, X., & Liu, L. (2020). Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment. Metals, 10(1), 130. https://doi.org/10.3390/met10010130