Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maximum Strength Test Ring Elements
2.2. Conditioning Maximum Concentric and Eccentric Strength Test
2.2.1. Conditioning Strength Test for Swallow/Support Scale
2.2.2. Conditioning Strength Test for Inverted Cross
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Relationships between Conditioning Maximum Strength Tests and Maximum Strength Tests on Rings
4.2. Benchmarks of Maximum Conditioning Concentric and Eccentric Strength
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIG. Code of Points Mag (2017–2020); FIG: Lausanne, Switzerland, 2017. [Google Scholar]
- Schärer, C.; Tacchelli, L.; Gopfert, B.; Gross, M.; Luthy, F.; Taube, W.; Hübner, K. Specific eccentric-isokinetic cluster training improves static strength elements on rings for elite gymnasts. Int. J. Environ. Res. Public Health 2019, 16, 4571. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.J.A. The importance of the swallow on structuring and valuing rings exercises of mens artisitc gymnastics. Palestrica Third Millenn. Civiliz. Sport 2009, 10, 190–195. [Google Scholar]
- Hübner, K.; Schärer, C. Relationship between swallow, support scale and iron cross on rings and their specific preconditioning strengthening exercises. Sci. Gymnast. J. 2015, 7, 59–68. [Google Scholar]
- Bernasconi, S.M.; Tordi, N.R.; Parratte, B.M.; Rouillon, J.D. Can shoulder muscle coordination during the support scale at ring height be replicated during training exercises in gymnastics? J. Strength Cond. Res. 2009, 23, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, S.M.; Tordi, N.R.; Parratte, B.M.; Rouillon, J.D.; Monnier, G.G. Effects of two devices on the surface electromyography responses of eleven shoulder muscles during azarian in gymnastics. J. Strength Cond. Res. 2006, 20, 53–57. [Google Scholar]
- Gorosito, M.A. Relative strength requirement for swallow element proper execution: A predictive test. Sci. Gymnast. J. 2013, 5, 59–67. [Google Scholar]
- Bernasconi, S.; Tordi, N.; Parratte, B.; Rouillon, J.D.; Monnier, G. Surface electromyography of nine shoulder muscles in two iron cross conditions in gymnastics. J. Sports Med. Phys. Fit. 2004, 44, 240–245. [Google Scholar]
- Bango, B.; Sillero-Quintana, M.; Grande, I. New tool to assess the force production in the swallow. Sci. Gymnast. J. 2013, 5, 47–58. [Google Scholar]
- Dunlavy, J.K.; Sands, W.A.; McNeal, J.A.; Stone, M.H.; Smith, S.L.; Jemni, M.; Haff, G.G. Strength performance assessment in a simulated mens gymnastics still rings cross. J. Sports Sci. Med. 2007, 6, 93–97. [Google Scholar] [PubMed]
- Schärer, C.; Hübner, K. Accuracy of prediction of maximum resistance at increased holding times based on a three seconds maximum static strength test of the three main strength elements on rings. Sci. Gymnast. J. 2016, 8, 125–134. [Google Scholar]
- Whinton, A.K.; Thompson, K.M.A.; Power, G.A.; Burr, J.F. Testing a novel isokinetic dynamometer constructed using a 1080 quantum. PLoS ONE 2018, 13, e0201179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehringer, S.; Whyte, D.G. Validity and test-retest reliability of the 1080 quantum system for bench press exercise. J. Strength Cond. Res. 2019, 33, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. Available online: https://sportsci.org/resource/stats/effectmag.html (accessed on 8 April 2021).
- Stone, M.; Plisk, S.; Collins, D. Training principles: Evaluation of modes and methods of resistance training—A coaching perspective. Sports Biomech. 2002, 1, 79–103. [Google Scholar] [CrossRef]
- Hedayatpour, N.; Falla, D. Physiological and neural adaptations to eccentric exercise: Mechanisms and considerations for training. Biomed. Res. Int. 2015, 2015, 193741. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. (1985) 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Higbie, E.J.; Cureton, K.J.; Warren, G.L., 3rd; Prior, B.M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J. Appl. Physiol. (1985) 1996, 81, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Duchateau, J.; Baudry, S. Insights into the neural control of eccentric contractions. J. Appl. Physiol. (1985) 2014, 116, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Enoka, R.M. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Hollander, D.B.; Kraemer, R.R.; Kilpatrick, M.W.; Ramadan, Z.G.; Reeves, G.V.; Francois, M.; Hebert, E.P.; Tryniecki, J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007, 21, 34–40. [Google Scholar] [CrossRef]
- Guilhem, G.; Cornu, C.; Guevel, A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann. Phys. Rehabil. Med. 2010, 53, 319–341. [Google Scholar] [CrossRef]
- Croisier, J.L.; Foidart-Dessalle, M.; Tinant, F.; Crielaard, J.M.; Forthomme, B. An isokinetic eccentric programme for the management of chronic lateral epicondylar tendinopathy. Br. J. Sports Med. 2007, 41, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | n | Body Mass (kg) | Fmax Rings (kg) | Fmax con (kg) | Fmax ecc (kg) |
---|---|---|---|---|---|
Swallow | 15 | 64.41 ± 4.71 | 55.33 ± 8.59 | 36.42 ± 5.00 | 51.91 ± 9.08 |
Support scale | 59.10 ± 7.82 | ||||
Inverted cross | 9 | 66.01 ± 5.03 | 52.68 ± 6.34 | 31.59 ± 5.87 | 42.49 ± 7.58 |
Element | Fmax con S, SS (kg) | Fmax ecc S, SS (kg) | Fmax con IC (kg) | Fmax ecc IC (kg) |
---|---|---|---|---|
Fmax Swallow (kg) | 0.87 ** | 0.92 ** | −0.05 | 0.64 |
Fmax Support scale (kg) | 0.77 ** | 0.65 * | −0.69 | 0.39 |
Fmax Inverted cross (kg) | 0.72 | 0.41 | 0.69 | 0.62 |
Element | Fmax con S, SS (%BW) | Fmax ecc (%BW) | Equation con | Equation ecc |
---|---|---|---|---|
Swallow 100% BW | 63.05% ± 3.80% | 94.10% ± 5.63% | y = 0.45x + 18.43 | y = 1.09x − 15.38 |
Support Scale 100% BW | 60.37% ± 4.95% | 86.79% ± 10.59% | y = 0.45x + 15.75 | y = 0.89x − 2.53 |
Inverted cross 100% BW | 56.66% ± 6.29% | 70.86 ± 8.24% | y = 0.42x + 14.44 | y = 0.32x + 38.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schärer, C.; Huber, S.; Bucher, P.; Capelli, C.; Hübner, K. Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics. Sports 2021, 9, 78. https://doi.org/10.3390/sports9060078
Schärer C, Huber S, Bucher P, Capelli C, Hübner K. Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics. Sports. 2021; 9(6):78. https://doi.org/10.3390/sports9060078
Chicago/Turabian StyleSchärer, Christoph, Sarina Huber, Pascal Bucher, Claudio Capelli, and Klaus Hübner. 2021. "Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics" Sports 9, no. 6: 78. https://doi.org/10.3390/sports9060078
APA StyleSchärer, C., Huber, S., Bucher, P., Capelli, C., & Hübner, K. (2021). Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics. Sports, 9(6), 78. https://doi.org/10.3390/sports9060078