Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review
Abstract
:1. Introduction
2. Defining Stress Fracture and Bone Stress Injury (BSI)
3. Epidemiology of Bone Stress Injuries in Adolescent Athletes
3.1. Commonly Affected Sites
3.2. Sports-Specific Bone Stress Injury
Location | Examples of Sports | Additional Considerations |
---|---|---|
Tibia | Running (endurance and track) [18,22] Basketball, netball, volleyball [16,19] Gymnastics [27] Ballet [17] Figure Skating [28] Track and Field [16,19] | |
Metatarsal (Figure 1) | Running (athletics) [20] Gymnastics [27] Basketball [21,30] Volleyball [15] Ballet [17,31,32] |
|
Tarsals (cuneiform, navicular, talus, calcaneus, cuboid) | Athletics [20] Basketball [16,21] Soccer (football) [16] Lacrosse [16] Figure skating [28] Ballet [17,29] | |
Fibula | Running (track) [15] Soccer [15] Basketball [15] Figure skating [28] |
|
Lumbar spine | Cricket [4,37,38] Tennis/Racquet sports [39] Gymnastics [15] Ballet [32] |
|
Sesamoid | Running (endurance) [41] Soccer (football) Basketball and volleyball [19] Ballet [41] | |
Ribs | Rowing [43] Baseball/Pitching sports [19,44] Tennis [19] Swimming [45] |
|
Olecranon and medial epicondyle | Baseball [19,47] | |
Pelvis/Sacrum | Running (endurance and athletics) [18] Football (Soccer) (kicking, sprinting or cutting) [19] |
|
Femur | Running (endurance and athletics) [15,53] |
|
Wrist (Distal radius and carpal) | Diving [54] Tennis [55,56] Gymnastics [27] | |
Patella | Gymnastics [59] Jumping sports (e.g., volleyball) [60] |
|
4. Risk Factors for Bone Stress Injuries in Adolescent Athletes
4.1. Training Load and Early Specialisation
4.2. Bone Mineral Density
4.3. The Female Athlete, Menstruation and Hormones
4.4. Male Athletes with Low Energy Availability
4.5. Dietary Considerations
4.6. Eating Disorders
4.7. Sleep and Stress
4.8. Biomechanical Factors
4.9. Medications
4.9.1. Asthma
4.9.2. Dermatological Conditions
4.10. Other Risk Factors
4.10.1. History of Fracture
4.10.2. Race
4.10.3. Bone Turnover Markers
4.10.4. Joint Hypermobility
5. Diagnosis
5.1. History and Symptoms
5.2. Clinical Signs
5.3. Imaging
5.3.1. Magnetic Resonance Imaging
5.3.2. Bone Scintigraphy
5.3.3. Plain X-ray
5.3.4. Computed Tomography (CT)
5.3.5. Therapeutic Ultrasound
5.3.6. Diagnostic Ultrasound
6. Management and Rehabilitation
6.1. Conservative Management and Prognostication
6.1.1. Low-Intensity Pulsed Ultrasound (LIPUS)
6.1.2. Electric Field Stimulation
6.2. Surgical Management
6.3. Other Management Considerations
Psychology in Rehabilitation
7. Prevention of Stress Fractures in Adolescent Athletes
7.1. Recognising Stages of Growth
7.2. Training Load
7.3. Resistance and Impact Training
7.4. Diet
7.4.1. Energy Availability
7.4.2. Calcium and Vitamin D Supplementation
7.5. Biomechanical Screening
7.6. Medication
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhthoff, H.K.; Jaworski, Z.F. Periosteal stress-induced reactions resembling stress fractures. A radiologic and histologic study in dogs. Clin. Orthop. Relat. Res. 1985, 199, 284–291. [Google Scholar]
- Fredericson, M.; Bergman, A.G.; Hoffman, K.L.; Dillingham, M.S. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am. J. Sports Med. 1995, 23, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Groshar, D.; Lam, M.; Even-Sapir, E.; Israel, O.; Front, D. Stress fractures and bone pain: Are they closely associated? Injury 1985, 16, 526–528. [Google Scholar] [CrossRef]
- Crewe, H.; Elliott, B.; Couanis, G.; Campbell, A.; Alderson, J. The lumbar spine of the young cricket fast bowler: An MRI study. J. Sci. Med. Sport 2012, 15, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R.; Bergman, A.G.; Miner, M.; Arendt, E.A.; Klevansky, A.B.; Matheson, G.O.; Norling, T.L.; Marcus, R. Tibial stress injury: Relationship of radiographic, nuclear medicine bone scanning, MR imaging, and CT Severity grades to clinical severity and time to healing. Radiology 2012, 263, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, J. Das Gesetz der Transformation der Knochen; Hirschwald Verlag: Berlin, Germany, 1892. [Google Scholar]
- Eriksen, E.F.; Melsen, F.; Mosekilde, L. Reconstruction of the resorptive site in iliac trabecular bone: A kinetic model for bone resorption in 20 normal individuals. Metab. Bone Dis. Relat. Res. 1984, 5, 235–242. [Google Scholar] [CrossRef]
- Burr, D.B. Remodeling and the repair of fatigue damage. Calcif. Tissue Int. 1993, 53 (Suppl. 1), S75–S81. [Google Scholar] [CrossRef]
- Flood, A.; Waddington, G.; Thompson, K.; Cathcart, S. Increased conditioned pain modulation in athletes. J. Sports Sci. 2017, 35, 1066–1072. [Google Scholar] [CrossRef]
- Fischerauer, S.F.; Talaei-Khoei, M.; Bexkens, R.; Ring, D.C.; Oh, L.S.; Vranceanu, A.M. What Is the Relationship of Fear Avoidance to Physical Function and Pain Intensity in Injured Athletes? Clin. Orthop. Relat. Res. 2018, 476, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Ducher, G.; Daly, R.M.; Bass, S.L. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. J. Bone Miner. Res. 2009, 24, 1686–1692. [Google Scholar] [CrossRef]
- Lynch, K.R.; Kemper, H.C.G.; Turi-Lynch, B.; Agostinete, R.R.; Ito, I.H.; Luiz-De-Marco, R.; Rodrigues, M.A., Jr.; Fernandes, R.A. Impact sports and bone fractures among adolescents. J. Sports Sci. 2017, 35, 2421–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, A.T.; Beck, B.R. Exercise, Osteoporosis, and Bone Geometry. Sports 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Bennell, K.L.; Malcolm, S.A.; Thomas, S.A.; Reid, S.J.; Brukner, P.D.; Ebeling, P.R.; Wark, J.D. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am. J. Sports Med. 1996, 24, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Rizzone, K.H.; Ackerman, K.E.; Roos, K.G.; Dompier, T.P.; Kerr, Z.Y. The Epidemiology of Stress Fractures in Collegiate Student-Athletes, 2004–2005 through 2013–2014 Academic Years. J. Athl. Train. 2017, 52, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changstrom, B.G.; Brou, L.; Khodaee, M.; Braund, C.; Comstock, R.D. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am. J. Sports Med. 2015, 43, 26–33. [Google Scholar] [CrossRef]
- Ekegren, C.L.; Quested, R.; Brodrick, A. Injuries in pre-professional ballet dancers: Incidence, characteristics and consequences. J. Sci. Med. Sport 2014, 17, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Sayres, L.C.; McCurdy, M.L.; Sainani, K.L.; Fredericson, M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med. Sci. Sports Exerc. 2013, 45, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, J.; Takeda, T. Stress fractures in athletes: Review of 196 cases. J. Orthop. Sci. 2003, 8, 273–278. [Google Scholar] [CrossRef]
- Nose-Ogura, S.; Yoshino, O.; Dohi, M.; Kigawa, M.; Harada, M.; Hiraike, O.; Onda, T.; Osuga, Y.; Fujii, T.; Saito, S. Risk factors of stress fractures due to the female athlete triad: Differences in teens and twenties. Scand. J. Med. Sci. Sports 2019. [Google Scholar] [CrossRef]
- Ohta-Fukushima, M.; Mutoh, Y.; Takasugi, S.; Iwata, H.; Ishii, S. Characteristics of stress fractures in young athletes under 20 years. J. Sports Med. Phys. Fit. 2002, 42, 198–206. [Google Scholar]
- Yagi, S.; Muneta, T.; Sekiya, I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 556–563. [Google Scholar] [CrossRef]
- Beck, B.R. Tibial stress injuries. An aetiological review for the purposes of guiding management. Sports Med. 1998, 26, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, C.; Giladi, M.; Simkin, A.; Rand, N.; Kedem, R.; Kashtan, H.; Stein, M. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin. Orthop. Relat. Res. 1988, 231, 216–221. [Google Scholar]
- Miller, T.L.; Jamieson, M.; Everson, S.; Siegel, C. Expected Time to Return to Athletic Participation After Stress Fracture in Division I Collegiate Athletes. Sports Health 2018, 10, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Matheson, G.O.; Clement, D.B.; McKenzie, D.C.; Taunton, J.E.; Lloyd-Smith, D.R.; MacIntyre, J.G. Stress fractures in athletes. A study of 320 cases. Am. J. Sports Med. 1987, 15, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.E.; Thomas, B.C. A systematic review of injuries in gymnastics. Phys. Sportsmed. 2019, 47, 96–121. [Google Scholar] [CrossRef] [PubMed]
- Dubravcic-Simunjak, S.; Kuipers, H.; Moran, J.; Pećina, M.; Simunjak, B.; Ambartsumov, R.; Sakai, H.; Mitchel, D.; Shobe, J. Stress fracture prevalence in elite figure skaters. J. Sports Sci. Med. 2008, 7, 419–420. [Google Scholar] [PubMed]
- McInnis, K.C.; Ramey, L.N. High-Risk Stress Fractures: Diagnosis and Management. PM&R 2016, 8, S113–S124. [Google Scholar] [CrossRef]
- Field, A.E.; Gordon, C.M.; Pierce, L.M.; Ramappa, A.; Kocher, M.S. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch. Pediatr. Adolesc. Med. 2011, 165, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrino, F.J.; Guillén, P. Overuse Injuries in Professional Ballet: Influence of Age and Years of Professional Practice. Orthop. J. Sports Med. 2017, 5, 2325967117712704. [Google Scholar] [CrossRef]
- Caine, D.; Goodwin, B.J.; Caine, C.G.; Bergeron, G. Epidemiological Review of Injury in Pre-Professional Ballet Dancers. J. Danc. Med. Sci. 2015, 19, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Park, Y.U.; Jegal, H.; Kim, K.C.; Young, K.W.; Kim, J.S. Factors associated with recurrent fifth metatarsal stress fracture. Foot Ankle Int. 2013, 34, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Niki, H.; Akagi, R.; Yamamoto, Y.; Sasho, T. Failure of Internal Fixation for Painful Bipartite Navicular in Two Adolescent Soccer Players: A Report of Two Cases. J. Foot Ankle Surg. 2016, 55, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, S.; Thomas, J. Not all ankle injuries are ankle sprains—Case of an isolated cuboid stress fracture. Clin. Pract. 2018, 8, 1093. [Google Scholar] [CrossRef] [Green Version]
- Han, J.S.; Geminiani, E.T.; Micheli, L.J. Epidemiology of Figure Skating Injuries: A Review of the Literature. Sports Health 2018, 10, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Ranson, C.A.; Burnett, A.F.; Kerslake, R.W. Injuries to the lower back in elite fast bowlers: Acute stress changes on MRI predict stress fracture. J. Bone Jt. Surg. Br. 2010, 92, 1664–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engstrom, C.M.; Walker, D.G. Pars interarticularis stress lesions in the lumbar spine of cricket fast bowlers. Med. Sci. Sports Exerc. 2007, 39, 28–33. [Google Scholar] [CrossRef]
- Debnath, U.K.; Freeman, B.J.; Grevitt, M.P.; Sithole, J.; Scammell, B.E.; Webb, J.K. Clinical outcome of symptomatic unilateral stress injuries of the lumbar pars interarticularis. Spine 2007, 32, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Stracciolini, A.; Casciano, R.; Levey Friedman, H.; Stein, C.J.; Meehan, W.P.; Micheli, L.J. Pediatric sports injuries: A comparison of males versus females. Am. J. Sports Med. 2014, 42, 965–972. [Google Scholar] [CrossRef]
- Dedmond, B.T.; Cory, J.W.; McBryde, A. The hallucal sesamoid complex. J. Am. Acad. Orthop. Surg. 2006, 14, 745–753. [Google Scholar] [CrossRef]
- Welck, M.J.; Hayes, T.; Pastides, P.; Khan, W.; Rudge, B. Stress fractures of the foot and ankle. Injury 2017, 48, 1722–1726. [Google Scholar] [CrossRef]
- D’Ailly, P.N.; Sluiter, J.K.; Kuijer, P.P. Rib stress fractures among rowers: A systematic review on return to sports, risk factors and prevention. J. Sports Med. Phys. Fit. 2016, 56, 744–753. [Google Scholar]
- Funakoshi, T.; Furushima, K.; Kusano, H.; Itoh, Y.; Miyamoto, A.; Horiuchi, Y.; Sugawara, M. First-Rib Stress Fracture in Overhead Throwing Athletes. J. Bone Jt. Surg. Am. 2019, 101, 896–903. [Google Scholar] [CrossRef]
- Low, S.; Kern, M.; Atanda, A. First-rib stress fracture in two adolescent swimmers: A case report. J. Sports Sci. 2016, 34, 1266–1270. [Google Scholar] [CrossRef]
- Christiansen, E.; Kanstrup, I.L. Increased risk of stress fractures of the ribs in elite rowers. Scand. J. Med. Sci. Sports 1997, 7, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Lowery, W.D.; Kurzweil, P.R.; Forman, S.K.; Morrison, D.S. Persistence of the olecranon physis: A cause of “little league elbow”. J. Shoulder Elb. Surg. 1995, 4, 143–147. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Carlson, J.L.; Chang, A.; Sainani, K.L.; Shultz, R.; Kim, J.H.; Cutti, P.; Golden, N.H.; Fredericson, M. Association of the Female Athlete Triad Risk Assessment Stratification to the Development of Bone Stress Injuries in Collegiate Athletes. Am. J. Sports Med. 2017, 45, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Parziale, A.L.; Popp, K.L.; Ackerman, K.E. Low Bone Mineral Density in Male Athletes Is Associated With Bone Stress Injuries at Anatomic Sites With Greater Trabecular Composition. Am. J. Sports Med. 2018, 46, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nattiv, A.; Kennedy, G.; Barrack, M.T.; Abdelkerim, A.; Goolsby, M.A.; Arends, J.C.; Seeger, L.L. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: A 5-year prospective study in collegiate track and field athletes. Am. J. Sports Med. 2013, 41, 1930–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudd, L.M.; Fornetti, W.; Pivarnik, J.M. Bone mineral density in collegiate female athletes: Comparisons among sports. J. Athl. Train. 2007, 42, 403–408. [Google Scholar]
- McAleer, S.S.; Lippie, E.; Norman, D.; Riepenhof, H. Nonoperative Management, Rehabilitation, and Functional and Clinical Progression of Osteitis Pubis/Pubic Bone Stress in Professional Soccer Players: A Case Series. J. Orthop. Sports Phys. Ther. 2017, 47, 683–690. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, G.U.; Denaro, V. Femoral Neck Stress Fractures. Oper. Tech. Sports Med. 2009, 17, 90–93. [Google Scholar] [CrossRef]
- Haase, S.C. Management of Upper Extremity Injury in Divers. Hand Clin. 2017, 33, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Balius, R.; Pedret, C.; Estruch, A.; Hernández, G.; Ruiz-Cotorro, A.; Mota, J. Stress fractures of the metacarpal bones in adolescent tennis players: A case series. Am. J. Sports Med. 2010, 38, 1215–1220. [Google Scholar] [CrossRef]
- Kohyama, S.; Kanamori, A.; Tanaka, T.; Hara, Y.; Yamazaki, M. Stress fracture of the scaphoid in an elite junior tennis player: A case report and review of the literature. J. Med. Case Rep. 2016, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caine, D.; DiFiori, J.; Maffulli, N. Physeal injuries in children’s and youth sports: Reasons for concern? Br. J. Sports Med. 2006, 40, 749–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeley, B.T.; Agel, J.; LaPrade, R.F. When Is It Too Early for Single Sport Specialization? Am. J. Sports Med. 2016, 44, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Seales, J.; Newcomer, S.; Bruce, J. A Case Report: Bilateral Patella Stress Fractures in a Collegiate Gymnast. J. Orthop. Case Rep. 2018, 8, 45–48. [Google Scholar] [CrossRef]
- Orava, S.; Taimela, S.; Kvist, M.; Karpakka, J.; Hulkko, A.; Kujala, U. Diagnosis and treatment of stress fracture of the patella in athletes. Knee Surg. Sports Traumatol. Arthrosc. 1996, 4, 206–211. [Google Scholar] [CrossRef]
- Fredericson, M.; Ngo, J.; Cobb, K. Effects of ball sports on future risk of stress fracture in runners. Clin. J. Sport Med. 2005, 15, 136–141. [Google Scholar] [CrossRef]
- DiStefano, L.J.; Dann, C.L.; Chang, C.J.; Putukian, M.; Pierpoint, L.A.; Currie, D.W.; Knowles, S.B.; Wasserman, E.B.; Dompier, T.P.; Comstock, R.D.; et al. The First Decade of Web-Based Sports Injury Surveillance: Descriptive Epidemiology of Injuries in US High School Girls’ Soccer (2005–2006 Through 2013–2014) and National Collegiate Athletic Association Women’s Soccer (2004–2005 Through 2013–2014). J. Athl. Train. 2018, 53, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Jayanthi, N.; DiFiori, J.P.; Faigenbaum, A.D.; Kiefer, A.W.; Logerstedt, D.; Micheli, L.J. Sports Specialization, Part II: Alternative Solutions to Early Sport Specialization in Youth Athletes. Sports Health 2016, 8, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, B.R.; Rudolph, K.; Matheson, G.O.; Bergman, A.G.; Norling, T.L. Risk factors for tibial stress injuries: A case-control study. Clin. J. Sport Med. 2015, 25, 230–236. [Google Scholar] [CrossRef]
- Barrack, M.T.; Fredericson, M.; Tenforde, A.S.; Nattiv, A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br. J. Sports Med. 2017, 51, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Aicale, R.; Tarantino, D.; Maffulli, N. Overuse injuries in sport: A comprehensive overview. J. Orthop. Surg. Res. 2018, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Barrack, M.T.; Gibbs, J.C.; De Souza, M.J.; Williams, N.I.; Nichols, J.F.; Rauh, M.J.; Nattiv, A. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: A prospective multisite study of exercising girls and women. Am. J. Sports Med. 2014, 42, 949–958. [Google Scholar] [CrossRef]
- Malisoux, L.; Frisch, A.; Urhausen, A.; Seil, R.; Theisen, D. Monitoring of sport participation and injury risk in young athletes. J. Sci. Med. Sport 2013, 16, 504–508. [Google Scholar] [CrossRef]
- Loud, K.J.; Gordon, C.M.; Micheli, L.J.; Field, A.E. Correlates of stress fractures among preadolescent and adolescent girls. Pediatrics 2005, 115, e399–e406. [Google Scholar] [CrossRef] [Green Version]
- Sonneville, K.R.; Gordon, C.M.; Kocher, M.S.; Pierce, L.M.; Ramappa, A.; Field, A.E. Vitamin d, calcium, and dairy intakes and stress fractures among female adolescents. Arch. Pediatr. Adolesc. Med. 2012, 166, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Kadel, N.J.; Teitz, C.C.; Kronmal, R.A. Stress fractures in ballet dancers. Am. J. Sports Med. 1992, 20, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Pasulka, J.; Jayanthi, N.; McCann, A.; Dugas, L.R.; LaBella, C. Specialization patterns across various youth sports and relationship to injury risk. Phys. Sportsmed. 2017, 45, 344–352. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Sainani, K.L.; Carter Sayres, L.; Milgrom, C.; Fredericson, M. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM&R 2015, 7, 222–225. [Google Scholar] [CrossRef]
- Duckham, R.L.; Bialo, S.R.; Machan, J.; Kriz, P.; Gordon, C.M. A case-control pilot study of stress fracture in adolescent girls: The discriminative ability of two imaging technologies to classify at-risk athletes. Osteoporos. Int. 2019, 30, 1573–1580. [Google Scholar] [CrossRef]
- Nussbaum, E.D.; Bjornaraa, J.; Gatt, C.J. Identifying Factors That Contribute to Adolescent Bony Stress Injury in Secondary School Athletes: A Comparative Analysis With a Healthy Athletic Control Group. Sports Health 2019, 11, 1941738118824293. [Google Scholar] [CrossRef]
- Abbott, A.; Bird, M.L.; Wild, E.; Brown, S.M.; Stewart, G.; Mulcahey, M.K. Part I: Epidemiology and Risk Factors for Stress Fractures in Female Athletes. Phys. Sportsmed. 2019, 48, 17–24. [Google Scholar] [CrossRef]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin. J. Sport Med. 2014, 24, 96–119. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, K.E.; Cano Sokoloff, N.; DE Nardo Maffazioli, G.; Clarke, H.M.; Lee, H.; Misra, M. Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes. Med. Sci. Sports Exerc. 2015, 47, 1577–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, N.S.; Barr, S.I. Cognitive dietary restraint is associated with stress fractures in women runners. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Tornberg, Å.; Melin, A.; Koivula, F.M.; Johansson, A.; Skouby, S.; Faber, J.; Sjödin, A. Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes. Med. Sci. Sports Exerc. 2017, 49, 2478–2485. [Google Scholar] [CrossRef]
- Iuliano-Burns, S.; Mirwald, R.L.; Bailey, D.A. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am. J. Hum. Biol. 2001, 13, 1–8. [Google Scholar] [CrossRef]
- Stracciolini, A.; Quinn, B.J.; Geminiani, E.; Kinney, S.; McCrystal, T.; Owen, M.; Pepin, M.J.; Stein, C.J. Body Mass Index and Menstrual Patterns in Dancers. Clin. Pediatr. 2017, 56, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Harel, Z.; Gold, M.; Cromer, B.; Bruner, A.; Stager, M.; Bachrach, L.; Wolter, K.; Reid, C.; Hertweck, P.; Nelson, A.; et al. Bone mineral density in postmenarchal adolescent girls in the United States: Associated biopsychosocial variables and bone turnover markers. J. Adolesc. Health 2007, 40, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P.; Medicine, A.C.o.S. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Elliott-Sale, K.J.; Tenforde, A.S.; Parziale, A.L.; Holtzman, B.; Ackerman, K.E. Endocrine Effects of Relative Energy Deficiency in Sport. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Jurov, I.; Keay, N.; Hadžić, V.; Spudić, D.; Rauter, S. Relationship between energy availability, energy conservation and cognitive restraint with performance measures in male endurance athletes. J. Int. Soc. Sports Nutr. 2021, 18, 24. [Google Scholar] [CrossRef]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjödin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Barrack, M.T.; Nattiv, A.; Fredericson, M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med. 2016, 46, 171–182. [Google Scholar] [CrossRef]
- Kraus, E.; Tenforde, A.S.; Nattiv, A.; Sainani, K.L.; Kussman, A.; Deakins-Roche, M.; Singh, S.; Kim, B.Y.; Barrack, M.T.; Fredericson, M. Bone stress injuries in male distance runners: Higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 2019, 53, 237–242. [Google Scholar] [CrossRef]
- Torstveit, M.K.; Fahrenholtz, I.L.; Lichtenstein, M.B.; Stenqvist, T.B.; Melin, A.K. Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019, 5, e000439. [Google Scholar] [CrossRef] [Green Version]
- Logue, D.M.; Madigan, S.M.; Melin, A.; Delahunt, E.; Heinen, M.; Donnell, S.M.; Corish, C.A. Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients 2020, 12, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keay, N.; Overseas, A.; Francis, G. Indicators and correlates of low energy availability in male and female dancers. BMJ Open Sports Exerc. Med. 2020, 6, e000906. [Google Scholar] [CrossRef] [PubMed]
- Keay, N.; Francis, G.; Hind, K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc. Med. 2018, 4, e000424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgi, A.A.; Gorham, E.D.; Garland, C.F.; Mohr, S.B.; Garland, F.C.; Zeng, K.; Thompson, K.; Lappe, J.M. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J. Bone Miner. Res. 2011, 26, 2371–2377. [Google Scholar] [CrossRef] [PubMed]
- Lappe, J.; Cullen, D.; Haynatzki, G.; Recker, R.; Ahlf, R.; Thompson, K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. 2008, 23, 741–749. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Nakayama, A.T.; Guerriere, K.I.; Lutz, L.J.; Walker, L.A.; Staab, J.S.; Scott, J.M.; Gasier, H.G.; McClung, J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone 2019, 123, 224–233. [Google Scholar] [CrossRef]
- Merrilees, M.J.; Smart, E.J.; Gilchrist, N.L.; Frampton, C.; Turner, J.G.; Hooke, E.; March, R.L.; Maguire, P. Effects of diary food supplements on bone mineral density in teenage girls. Eur. J. Nutr. 2000, 39, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Joy, E.; Kussman, A.; Nattiv, A. 2016 update on eating disorders in athletes: A comprehensive narrative review with a focus on clinical assessment and management. Br. J. Sports Med. 2016, 50, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Kandemir, N.; Slattery, M.; Ackerman, K.E.; Tulsiani, S.; Bose, A.; Singhal, V.; Baskaran, C.; Ebrahimi, S.; Goldstein, M.; Eddy, K.; et al. Bone Parameters in Anorexia Nervosa and Athletic Amenorrhea: Comparison of Two Hypothalamic Amenorrhea States. J. Clin. Endocrinol. Metab. 2018, 103, 2392–2402. [Google Scholar] [CrossRef]
- Misra, M. Long-term skeletal effects of eating disorders with onset in adolescence. Ann. N. Y. Acad. Sci. 2008, 1135, 212–218. [Google Scholar] [CrossRef]
- Arora, T.; Broglia, E.; Thomas, G.N.; Taheri, S. Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias. Sleep Med. 2014, 15, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Von Rosen, P.; Olofsson, O.; Väsbom, S.; Heijne, A. Correlates of health in adolescent elite athletes and adolescents: A cross-sectional study of 1016 adolescents. Eur. J. Sport Sci. 2019, 19, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Milewski, M.D.; Skaggs, D.L.; Bishop, G.A.; Pace, J.L.; Ibrahim, D.A.; Wren, T.A.; Barzdukas, A. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. J. Pediatr. Orthop. 2014, 34, 129–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finestone, A.; Milgrom, C. How stress fracture incidence was lowered in the Israeli army: A 25-yr struggle. Med. Sci. Sports Exerc. 2008, 40, S623–S629. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.; Brukner, P. Preventing and managing stress fractures in athletes. Phys. Ther. Sport 2005, 6, 169–210. [Google Scholar] [CrossRef]
- Boyce, A.M.; Gafni, R.I. Approach to the child with fractures. J. Clin. Endocrinol. Metab. 2011, 96, 1943–1952. [Google Scholar] [CrossRef] [Green Version]
- Hopp, R.J.; Degan, J.A.; Biven, R.E.; Kinberg, K.; Gallagher, G.C. Longitudinal assessment of bone mineral density in children with chronic asthma. Ann. Allergy Asthma Immunol. 1995, 75, 143–148. [Google Scholar]
- Bahceciler, N.N.; Sezgin, G.; Nursoy, M.A.; Barlan, I.B.; Basaran, M.M. Inhaled corticosteroids and bone density of children with asthma. J. Asthma 2002, 39, 151–157. [Google Scholar] [CrossRef]
- Allen, D.B. Effects of inhaled steroids on growth, bone metabolism, and adrenal function. Adv. Pediatr. 2006, 53, 101–110. [Google Scholar] [CrossRef]
- Zieck, S.E.; George, J.; Blakeley, B.A.; Welsh, L.; James, S.; Ranganathan, S.; Simm, P.; Lim, A. Asthma, bones and corticosteroids: Are inhaled corticosteroids associated with fractures in children with asthma? J. Paediatr. Child. Health 2017, 53, 771–777. [Google Scholar] [CrossRef]
- Roux, C.; Kolta, S.; Desfougères, J.L.; Minini, P.; Bidat, E. Long-term safety of fluticasone propionate and nedocromil sodium on bone in children with asthma. Pediatrics 2003, 111, e706–e713. [Google Scholar] [CrossRef] [Green Version]
- Hoover, K.B.; Miller, C.G.; Galante, N.C.; Langman, C.B. A double-blind, randomized, Phase III, multicenter study in 358 pediatric subjects receiving isotretinoin therapy demonstrates no effect on pediatric bone mineral density. Osteoporos. Int. 2015, 26, 2441–2447. [Google Scholar] [CrossRef]
- Costa, C.S.; Bagatin, E.; Martimbianco, A.L.C.; da Silva, E.M.; Lúcio, M.M.; Magin, P.; Riera, R. Oral isotretinoin for acne. Cochrane Database Syst. Rev. 2018, 11, CD009435. [Google Scholar] [CrossRef]
- Gersten, J.; Hsieh, J.; Weiss, H.; Ricciotti, N.A. Effect of Extended 30 μg Ethinyl Estradiol with Continuous Low-Dose Ethinyl Estradiol and Cyclic 20 μg Ethinyl Estradiol Oral Contraception on Adolescent Bone Density: A Randomized Trial. J. Pediatr. Adolesc. Gynecol. 2016, 29, 635–642. [Google Scholar] [CrossRef]
- Wren, T.A.; Shepherd, J.A.; Kalkwarf, H.J.; Zemel, B.S.; Lappe, J.M.; Oberfield, S.; Dorey, F.J.; Winer, K.K.; Gilsanz, V. Racial disparity in fracture risk between white and nonwhite children in the United States. J. Pediatr. 2012, 161, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman, B.R.; Gun, B.; Bader, J.O.; Orr, J.D.; Belmont, P.J. Epidemiology of Lower Extremity Stress Fractures in the United States Military. Mil. Med. 2016, 181, 1308–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanovich, R.; Evans, R.K.; Friedman, E.; Moran, D.S. Bone turnover markers do not predict stress fracture in elite combat recruits. Clin. Orthop. Relat. Res. 2013, 471, 1365–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Chang, Q.; Huang, T.; Huang, C. Prospective cohort study of the risk factors for stress fractures in Chinese male infantry recruits. J. Int. Med. Res. 2016, 44, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Välimäki, V.V.; Alfthan, H.; Lehmuskallio, E.; Löyttyniemi, E.; Sahi, T.; Suominen, H.; Välimäki, M.J. Risk factors for clinical stress fractures in male military recruits: A prospective cohort study. Bone 2005, 37, 267–273. [Google Scholar] [CrossRef]
- Bennell, K.L.; Malcolm, S.A.; Brukner, P.D.; Green, R.M.; Hopper, J.L.; Wark, J.D.; Ebeling, P.R. A 12-month prospective study of the relationship between stress fractures and bone turnover in athletes. Calcif. Tissue Int. 1998, 63, 80–85. [Google Scholar] [CrossRef]
- Russek, L.N.; Errico, D.M. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a “healthy” college population. Clin. Rheumatol. 2016, 35, 1029–1039. [Google Scholar] [CrossRef]
- Kaneko, H.; Murakami, M.; Nishizawa, K. Prevalence and clinical features of sports-related lumbosacral stress injuries in the young. Arch. Orthop. Trauma Surg. 2017, 137, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.W.; Weiss, C.B.; Wheeler, D.L. Stress fractures of the femoral shaft in athletes—More common than expected. A new clinical test. Am. J. Sports Med. 1994, 22, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Sailhan, F.; Courvoisier, A.; Brunet, O.; Chotel, F.; Berard, J. Continued growth of the hip after fixation of slipped capital femoral epiphysis using a single cannulated screw with a proximal threading. J. Child. Orthop. 2011, 5, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Dobrindt, O.; Hoffmeyer, B.; Ruf, J.; Seidensticker, M.; Steffen, I.G.; Fischbach, F.; Zarva, A.; Wieners, G.; Ulrich, G.; Lohmann, C.H.; et al. Estimation of return-to-sports-time for athletes with stress fracture—An approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet. Disord. 2012, 13, 139. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, M.; Minutoli, F.; Scribano, E.; Ascenti, G.; Vinci, S.; Bruschetta, D.; Magaudda, L.; Blandino, A. CT and MR imaging findings in athletes with early tibial stress injuries: Comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 2005, 235, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Kountouris, A.; Sims, K.; Beakley, D.; Saw, A.E.; Orchard, J.; Rotstein, A.; Cook, J.L. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. Br. J. Sports Med. 2018, 53, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Dobrindt, O.; Hoffmeyer, B.; Ruf, J.; Seidensticker, M.; Steffen, I.G.; Zarva, A.; Fischbach, F.; Wieners, G.; Furth, C.; Lohmann, C.H.; et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin 2012, 51, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Bryant, L.R.; Song, W.S.; Banks, K.P.; Bui-Mansfield, L.T.; Bradley, Y.C. Comparison of planar scintigraphy alone and with SPECT for the initial evaluation of femoral neck stress fracture. AJR Am. J. Roentgenol. 2008, 191, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Zwas, S.T.; Elkanovitch, R.; Frank, G. Interpretation and classification of bone scintigraphic findings in stress fractures. J. Nucl. Med. 1987, 28, 452–457. [Google Scholar]
- Savoca, C.J. Stress fractures. A classification of the earliest radiographic signs. Radiology 1971, 100, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Schneiders, A.G.; Sullivan, S.J.; Hendrick, P.A.; Hones, B.D.; McMaster, A.R.; Sugden, B.A.; Tomlinson, C. The ability of clinical tests to diagnose stress fractures: A systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 2012, 42, 760–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, B. Can therapeutic ultrasound accurately detect bone stress injuries in athletes? Clin. J. Sport Med. 2013, 23, 241–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, Y.; Ray, J.; Kraus, E.; Syrop, I.P.; Fredericson, M. A Review and Proposed Rationale for the use of Ultrasonography as a Diagnostic Modality in the Identification of Bone Stress Injuries. J. Ultrasound Med. 2018, 37, 2297–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukada, M.; Takiuchi, T.; Watanabe, K. Low-Intensity Pulsed Ultrasound for Early-Stage Lumbar Spondylolysis in Young Athletes. Clin. J. Sport Med. 2019, 29, 262–266. [Google Scholar] [CrossRef]
- Anderson, K.; Sarwark, J.F.; Conway, J.J.; Logue, E.S.; Schafer, M.F. Quantitative assessment with SPECT imaging of stress injuries of the pars interarticularis and response to bracing. J. Pediatr. Orthop. 2000, 20, 28–33. [Google Scholar] [CrossRef]
- Kaeding, C.C.; Miller, T. The comprehensive description of stress fractures: A new classification system. J. Bone Jt. Surg. Am. 2013, 95, 1214–1220. [Google Scholar] [CrossRef]
- Leone, A.; Cianfoni, A.; Cerase, A.; Magarelli, N.; Bonomo, L. Lumbar spondylolysis: A review. Skelet. Radiol. 2011, 40, 683–700. [Google Scholar] [CrossRef]
- Brukner, P.; Bennell, K. Stress fractures in female athletes. Diagnosis, management and rehabilitation. Sports Med. 1997, 24, 419–429. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Watanabe, L.M.; Moreno, T.J.; Fredericson, M. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury. PM&R 2012, 4, 629–631. [Google Scholar] [CrossRef]
- Schandelmaier, S.; Kaushal, A.; Lytvyn, L.; Heels-Ansdell, D.; Siemieniuk, R.A.; Agoritsas, T.; Guyatt, G.H.; Vandvik, P.O.; Couban, R.; Mollon, B.; et al. Low intensity pulsed ultrasound for bone healing: Systematic review of randomized controlled trials. BMJ 2017, 356, j656. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.Y.; Kuah, D.E.; Graham, K.S.; Markson, G. Low-intensity pulsed ultrasound in lower limb bone stress injuries: A randomized controlled trial. Clin. J. Sport Med. 2014, 24, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R.; Matheson, G.O.; Bergman, G.; Norling, T.; Fredericson, M.; Hoffman, A.R.; Marcus, R. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am. J. Sports Med. 2008, 36, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Griffith, T.B.; Kercher, J.; Clifton Willimon, S.; Perkins, C.; Duralde, X.A. Elbow Injuries in the Adolescent Thrower. Curr. Rev. Musculoskelet. Med. 2018, 11, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Rosen, P.; Kottorp, A.; Fridén, C.; Frohm, A.; Heijne, A. Young, talented and injured: Injury perceptions, experiences and consequences in adolescent elite athletes. Eur. J. Sport Sci. 2018, 18, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.I.; Mallinson, R.J.; De Souza, M.J. Rationale and study design of an intervention of increased energy intake in women with exercise-associated menstrual disturbances to improve menstrual function and bone health: The REFUEL study. Contemp. Clin. Trials Commun. 2019, 14, 100325. [Google Scholar] [CrossRef] [PubMed]
- Hind, K.; Burrows, M. Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone 2007, 40, 14–27. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Weeks, B.K.; Beck, B.R. The Relationship between Physical Activity and Bone during Adolescence Differs according to Sex and Biological Maturity. J. Osteoporos. 2010, 2010, 546593. [Google Scholar] [CrossRef] [Green Version]
- Rantalainen, T.; Weeks, B.K.; Nogueira, R.C.; Beck, B.R. Effects of bone-specific physical activity, gender and maturity on tibial cross-sectional bone material distribution: A cross-sectional pQCT comparison of children and young adults aged 5–29 years. Bone 2015, 72, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Rantalainen, T.; Weeks, B.K.; Nogueira, R.C.; Beck, B.R. Long bone robustness during growth: A cross-sectional pQCT examination of children and young adults aged 5–29 years. Bone 2016, 93, 71–78. [Google Scholar] [CrossRef]
- Beck, B.R. Exercise for Bone in Childhood-Hitting the Sweet Spot. Pediatr. Exerc. Sci. 2017, 29, 440–449. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Boström, A.; Thulin, K.; Fredriksson, M.; Reese, D.; Rockborn, P.; Hammar, M.L. Risk factors for acute and overuse sport injuries in Swedish children 11 to 15 years old: What about resistance training with weights? Scand. J. Med. Sci. Sports 2016, 26, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sports Med. 2014, 48, 498–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, R.C.; Weeks, B.K.; Beck, B.R. Exercise to improve pediatric bone and fat: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2014, 46, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.K.; Bauer, J.J.; Snow, C.M. Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. J. Bone Miner. Res. 2001, 16, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.K.; Young, C.M.; Beck, B.R. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and Girls: The POWER PE study. J. Bone Miner. Res. 2008, 23, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Blimkie, C.J.; Rice, S.; Webber, C.E.; Martin, J.; Levy, D.; Gordon, C.L. Effects of resistance training on bone mineral content and density in adolescent females. Can. J. Physiol. Pharm. 1996, 74, 1025–1033. [Google Scholar] [CrossRef]
- Witzke, K.A.; Snow, C.M. Effects of plyometric jump training on bone mass in adolescent girls. Med. Sci. Sports Exerc. 2000, 32, 1051–1057. [Google Scholar] [CrossRef]
- Nichols, D.L.; Sanborn, C.F.; Love, A.M. Resistance training and bone mineral density in adolescent females. J. Pediatr. 2001, 139, 494–500. [Google Scholar] [CrossRef]
- Vlachopoulos, D. The impact of different loading sports and a jumping intervention on bone health in adolescent males: The PRO-BONE study. Br. J. Sports Med. 2018, 53, 1255–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowthwaite, J.N.; Weiss, D.M.; Thein-Nissenbaum, J.; Scerpella, T.A. A 2-yr, School-Based Resistance Exercise Pilot Program Increases Bone Accrual in Adolescent Girls. Transl. J. Am. Coll. Sports Med. 2019, 4, 74–83. [Google Scholar]
- Meyer, U.; Romann, M.; Zahner, L.; Schindler, C.; Puder, J.J.; Kraenzlin, M.; Rizzoli, R.; Kriemler, S. Effect of a general school-based physical activity intervention on bone mineral content and density: A cluster-randomized controlled trial. Bone 2011, 48, 792–797. [Google Scholar] [CrossRef]
- Nogueira, R.C.; Weeks, B.K.; Beck, B.R. An in-school exercise intervention to enhance bone and reduce fat in girls: The CAPO Kids trial. Bone 2014, 68, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, R.C.; Weeks, B.K.; Beck, B. One-Year Follow-up of the CAPO Kids Trial: Are Physical Benefits Maintained? Pediatr. Exerc. Sci. 2017, 29, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Lauersen, J.B.; Andersen, T.E.; Andersen, L.B. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: A systematic review, qualitative analysis and meta-analysis. Br. J. Sports Med. 2018, 52, 1557–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulff Helge, E.; Melin, A.; Waaddegaard, M.; Kanstrup, I.L. BMD in elite female triathletes is related to isokinetic peak torque without any association to sex hormone concentrations. J. Sports Med. Phys. Fit. 2012, 52, 489–500. [Google Scholar]
- Keay, N.; Francis, G.; Entwistle, I.; Hind, K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc. Med. 2019, 5, e000523. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2018, 53, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.A.; Appaneal, R.N.; Hughes, D.; Vlahovich, N.; Waddington, G.; Burke, L.M.; Drew, M. Prevalence of impaired physiological function consistent with Relative Energy Deficiency in Sport (RED-S): An Australian elite and pre-elite cohort. Br. J. Sports Med. 2020, 55, 38–45. [Google Scholar] [CrossRef]
- Kroshus, E.; DeFreese, J.D.; Kerr, Z.Y. Collegiate Athletic Trainers’ Knowledge of the Female Athlete Triad and Relative Energy Deficiency in Sport. J. Athl. Train. 2018, 53, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Neal, S.; Sykes, J.; Rigby, M.; Hess, B. A review and clinical summary of vitamin D in regard to bone health and athletic performance. Phys. Sportsmed. 2015, 43, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.A.; Zobitz, M.M.; Pak, C.Y. Dose dependency of calcium absorption: A comparison of calcium carbonate and calcium citrate. J. Bone Miner. Res. 1988, 3, 253–258. [Google Scholar] [CrossRef]
- McDonnell, L.K.; Hume, P.A.; Nolte, V. Rib stress fractures among rowers: Definition, epidemiology, mechanisms, risk factors and effectiveness of injury prevention strategies. Sports Med. 2011, 41, 883–901. [Google Scholar] [CrossRef]
- Warden, S.J.; Davis, I.S.; Fredericson, M. Management and prevention of bone stress injuries in long-distance runners. J. Orthop. Sports Phys. Ther. 2014, 44, 749–765. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, K.E.; Singhal, V.; Baskaran, C.; Slattery, M.; Campoverde Reyes, K.J.; Toth, A.; Eddy, K.T.; Bouxsein, M.L.; Lee, H.; Klibanski, A.; et al. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: A randomised clinical trial. Br. J. Sports Med. 2019, 53, 229–236. [Google Scholar] [CrossRef]
- Singhal, V.; Ackerman, K.E.; Bose, A.; Torre Flores, L.P.; Lee, H.; Misra, M. Impact of Route of Estrogen Administration on Bone Turnover Markers in Oligoamenorrheic Athletes and its Mediators. J. Clin. Endocrinol. Metab. 2018, 104, 1449–1458. [Google Scholar] [CrossRef]
- Altayar, O.; Al Nofal, A.; Carranza Leon, B.G.; Prokop, L.J.; Wang, Z.; Murad, M.H. Treatments to Prevent Bone Loss in Functional Hypothalamic Amenorrhea: A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2017, 1, 500–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadgostar, H.; Soleimany, G.; Movaseghi, S.; Dadgostar, E.; Lotfian, S. The effect of hormone therapy on bone mineral density and cardiovascular factors among Iranian female athletes with amenorrhea/oligomenorrhea: A randomized clinical trial. Med. J. Islam. Repub. Iran 2018, 32, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, A.D.C.B.; Goldberg, T.B.L.; Biason, T.P.; Kurokawa, C.S.; Silva, C.C.D.; Corrente, J.E.; Nunes, H.R.C. One-year adolescent bone mineral density and bone formation marker changes through the use or lack of use of combined hormonal contraceptives. J. Pediatr. 2018, 95, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Sokal, A.; Elefant, E.; Leturcq, T.; Beghin, D.; Mariette, X.; Seror, R. Pregnancy and newborn outcomes after exposure to bisphosphonates: A case-control study. Osteoporos. Int. 2019, 30, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, C.; Finestone, A.; Novack, V.; Pereg, D.; Goldich, Y.; Kreiss, Y.; Zimlichman, E.; Kaufman, S.; Liebergall, M.; Burr, D. The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone 2004, 35, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Al-Moamary, M.S.; Alhaider, S.A.; Alangari, A.A.; Al Ghobain, M.O.; Zeitouni, M.O.; Idrees, M.M.; Alanazi, A.F.; Al-Harbi, A.S.; Yousef, A.A.; Alorainy, H.S.; et al. The Saudi Initiative for Asthma—2019 Update: Guidelines for the diagnosis and management of asthma in adults and children. Ann. Thorac. Med. 2019, 14, 3–48. [Google Scholar] [CrossRef]
Grade | Radiography [132] | NM Bone Scanning [131] | MR Imaging [2] | CT Scanning [127] |
---|---|---|---|---|
0 | No abnormality | No abnormality | No abnormality | No abnormality |
I | Gray cortex sign; margin is indistinct, density lower | Linear increased activity in cortical region | Mild to moderate periosteal oedema | Soft tissue mass adjacent to periosteal surface |
II | Acute periosteal reaction, density differs from rest of cortex showing incomplete mineralisation | Small focal region of increased activity | Periosteal oedema and bone marrow edema only on T2 weighted images | Increased attenuation of yellow marrow |
III | Lucent areas in cortex, ill- defined foci at site of pain | - | Marrow oedema on T1- and T2-weighted images with or without periosteal oedema on T1- or T2- weighted images and loss of cortical signal void, intracortical increased intensity and intracortical linear hyperintensity | Increased hypoattenuation (osteopenia), intracortical hypoattenuation (resorption cavity), and subtle intracortical linear hypoattenuation (striation) |
IV | Fracture line present | Very large focal region of highly increased activity | Low-signal-intensity fracture line with all sequences, moderate to severe periosteal oedema on T1- and T-2 weighted images, marrow oedema on T1- and T2- weighted images, may also show severe periosteal and moderate muscle oedema | Hypoattenuating line |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, B.; Drysdale, L. Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review. Sports 2021, 9, 52. https://doi.org/10.3390/sports9040052
Beck B, Drysdale L. Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review. Sports. 2021; 9(4):52. https://doi.org/10.3390/sports9040052
Chicago/Turabian StyleBeck, Belinda, and Louise Drysdale. 2021. "Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review" Sports 9, no. 4: 52. https://doi.org/10.3390/sports9040052
APA StyleBeck, B., & Drysdale, L. (2021). Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review. Sports, 9(4), 52. https://doi.org/10.3390/sports9040052