Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Flow
2.2. Performance Endpoint
2.3. Metabolomic Analysis
2.4. Control Subjects
2.5. Statistical Analysis
3. Results
3.1. Participant and Control Characteristics
3.2. Phase I: Non-targeted Metabolomics
3.3. Phase II: Targeted Lipidomics
3.3.1. PC Levels and 161-km Finish Time
3.3.2. PC Levels in Race Participants vs. Non-athletic Controls
3.4. Phase II: Choline
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, R.; Blair, S.; Steven, N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Levine, B.D.; Myers, J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.H.; Kim, K. Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 2011, 8, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Mitmesser, S.H. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Bye, A.; Vettukattil, R.; Aspenes, S.T.; Giskeødegård, G.F.; Gribbestad, I.S.; Wisløff, U.; Bathen, T.F. Serum Levels of Choline-Containing Compounds Are Associated with Aerobic Fitness Level: The HUNT-Study. PLoS ONE 2012, 7, e42330. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Wientzek, K.; Bachlechener, U.; Jacobs, S.; Drogan, D.; Prehn, C.; Adamski, J.; Krumsiek, J.; Pischon, T.; Boeing, H.; et al. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: Findings from a population-based study. Int. J. Obes. 2014, 38, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Farrell, L.; Wood, M.J.; Martinovic, M.; Arany, Z.; Rowe, G.C.; Souza, A.; Cheng, S.; Yang, E.; Shi, X.; et al. Metabolic signatures of exercise in human plasma. Sci. Trans. Med. 2010, 2, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Muhsen, A.A.; Burleigh, M.; Daskalaki, E.; Zhang, T.; Easton, C.; Watson, D.G. Metabolomic profiling of submaximal exercise at a standardized relative intensity in healthy adults. Metabolites 2016, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Zafeiridis, A.; Chatziioannou, A.C.; Sarivasiliou, H.; Kyparos, A.; Nikolaidis, M.G.; Vrabas, I.S.; Theodoridis, G.A.; Pechlivanis, A.; Zoumpoulakis, P.; Baskakis, C.; et al. Global metabolic stress of isoeffort continuous and high intensity interval aerobic exercise: A comparative 1H NMR metabonomic study. J. Proteome Res. 2016, 15, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Danaher, J.; Gerber, T.; Wellard, R.M.; Stathis, C.G.; Cooke, M.B. The use of metabolomics to monitor simultaneous changes in metabolic variables following supramaximal low volume high intensity exercise. Metabolomics 2016, 12, 7. [Google Scholar] [CrossRef][Green Version]
- Mastrokolias, A.; Pool, R.; Mina, E.; Hettne, K.M.; van Duijn, E.; van der Mast, R.C.; van Ommen, G.; Hoen, P.; Prehn, C.; van Roon-Mom, W.; et al. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington’s disease peripheral blood samples. Metabolomics 2016, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Plumhoff, E.A.; Masoner, D.; Dale, J.D. Preanalytic Laboratory Errors: Identification and Prevention. Available online: http://preq.in/images/Mayo.pdf (accessed on 15 February 2020).
- Newsom, S.A.; Brozinick, J.T.; Kiseljak-Vassiliades, K.; Strauss, A.N.; Bacon, S.D.; Kerege, A.A.; Bui, H.H.; Sanders, P.; Siddall, P.; Thomas, M.; et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans. J. Appl. Physiol. 2016, 120, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Wallner, S.; Schmitz, G. Pasmalogens: The neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 2011, 164, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Stefan, N.; Yu, Z.; Muhlenbruch, K.; Drogan, D.; Joost, H.G.; Roden, M.; Fritsche, A.; Häring, H.-U.; de Angelis, M.H.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using targeted metabolomics approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.P.; Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 1956, 222, 193–214. [Google Scholar] [PubMed]
- Sandage, B.W.; Sabounjian, R.N.; White, R.; Wurtman, R.J. Choline citrate may enhance athletic performance. Physiologist 1992, 35, 236. [Google Scholar]
- Jäger, R.; Purpura, M.; Kingsley, M. Phospholipids and sports performance. J. Int. Soc. Sports Nutr. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Conlay, L.A.; Wurtman, R.J.; Blusztajn, J.K.; Coviella, I.L.G.; Maher, T.J.; Evoniuk, G.E. Decreased Plasma Choline Concentrations in Marathon Runners. N. Engl. J. Med. 1986, 315, 892. [Google Scholar] [PubMed]
- Conlay, L.A.; Sabounjian, L.A.; Wurtman, R.J. Exercise and Neuromodulators: Choline and Acetylcholine in Marathon Runners. Int. J. Sports Med. 1992, 13, S141–S142. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Gant, N. Chapter 2.3—The Biochemistry of Choline. In Magnetic Resonance Spectroscopy; Academic Press: Cambridge, MA, USA, 2014; pp. 104–110. [Google Scholar]
- Li, Z.; Vance, D.E. Thematic Review Series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Høeg, T.B.; Chmiel, K.; Warrick, A.E.; Taylor, S.L.; Weiss, R.H. Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports 2020, 8, 44. https://doi.org/10.3390/sports8040044
Høeg TB, Chmiel K, Warrick AE, Taylor SL, Weiss RH. Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports. 2020; 8(4):44. https://doi.org/10.3390/sports8040044
Chicago/Turabian StyleHøeg, Tracy B., Kenneth Chmiel, Alexandra E. Warrick, Sandra L. Taylor, and Robert H. Weiss. 2020. "Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance" Sports 8, no. 4: 44. https://doi.org/10.3390/sports8040044
APA StyleHøeg, T. B., Chmiel, K., Warrick, A. E., Taylor, S. L., & Weiss, R. H. (2020). Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports, 8(4), 44. https://doi.org/10.3390/sports8040044