A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Testing Procedures
2.3.1. Load–Velocity Profile Determination
2.3.2. Resistance Exercise Tests
2.4. Instruments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.; Tarpenning, K.; Marino, F. Designing Resistance Training Programmes to Enhance Muscular Fitness. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.; Orr, R.; Halaki, M.; Hackett, D. Erratum to: Effect of training leading to repetition failure on muscular strength: A systematic review and meta-analysis. Sports Med. 2016, 46, 605–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; Ibañez, J.; González-Badillo, J.J.; Häkkinen, K.; Ratamess, N.A.; Kraemer, W.J.; Gorostiaga, E.M. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J. Appl. Physiol. 2006, 100, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Rodriguez-Rosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef]
- Sanchez-Moreno, M.; Rodriguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef]
- Padulo, J.; Mignogna, P.; Mignardi, S.; Tonni, F.; D’Ottavio, S. Effect of Different Pushing Speeds on Bench Press. Int. J. Sports Med. 2012, 33, 376–380. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; González-Badillo, J.J. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Tufano, J.; Brown, L.; Haff, G. Theoretical and Practical Aspects of Different Cluster Set Structures. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef]
- Morales-Artacho, A.; Padial, P.; García-Ramos, A.; Pérez-Castilla, A.; Feriche, B. Influence of a Cluster Set Configuration on the Adaptations to Short-Term Power Training. J. Strength Cond. Res. 2018, 32, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.; Taber, C.; Carroll, K.; Cunanan, A.; Sams, M.; Wetmore, A.; Stone, M.H. Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat. Sports 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Custodio, R.; Rodríguez-Rosell, D.; Yáñez-Garcí, J.; Sánchez-Moreno, M.; Pareja-Blanco, F.; González-Badillo, J. Effect of different inter-repetition rest intervals across four load intensities on velocity loss and blood lactate concentration during full squat exercise. J. Sports Sci. 2018, 36, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.; Halaj, M.; Kampmiller, T.; Novosad, A.; Buzgo, G. Cluster sets vs. traditional sets: Levelling out the playing field using a power-based threshold. PLoS ONE 2018, 13, e0208035. [Google Scholar] [CrossRef]
- Oliver, J.; Jagim, A.; Sanchez, A.; Mardock, M.; Kelly, K.; Meredith, H.; Fluckey, J.D. Greater Gains in Strength and Power with Intraset Rest Intervals in Hypertrophic Training. J. Strength Cond Res. 2013, 27, 3116–3131. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Soler, E.; Mayo, X.; Río-Rodríguez, D.; Carballeira, E.; Fariñas, J.; Fernández-Del-Olmo, M. Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. J. Sports Sci. 2016, 34, 1473–1484. [Google Scholar] [CrossRef]
- Nicholson, G.; Ispoglou, T.; Bissas, A. The impact of repetition mechanics on the adaptations resulting from strength-, hypertrophy- and cluster-type resistance training. Eur. J. Appl. Physiol. 2016, 116, 1875–1888. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.; Halaki, M.; Orr, R.; Helms, E.; Hackett, D. Changes in Bench Press Velocity and Power After 8 Weeks of High-Load Cluster- or Traditional-Set Structures. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Gregory Haff, G. Mean velocity vs. mean propulsive velocity vs. peak velocity: Which variable determines bench press relative load with higher reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities during the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [PubMed]
- Tesch, P.A.; Colliander, E.B.; Kaiser, P. Muscle metabolism during intense, heavy-resistance exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Nitzsche, N.; Baumgartel, L.; Weigert, M.; Neuendorf, T.; Frholich, M.; Schulz, H. Acute effects of three resistance exercise programs on energy metabolism. Int. J. Sport Sci. 2017, 7, 29–35. [Google Scholar]
- Chamari, K.; Ahmaidi, S.; Blum, J.Y.; Hue, O.; Temfemo, A.; Hertogh, C.; Mercier, J. Venous blood lactate increase after vertical jumping in volleyball athletes. Eur. J. Appl. Physiol. 2001, 85, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.; Gleeson, M. The Biochemical Basis of Sports Performance, 2nd ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
Variable | Testing Protocol | |||
---|---|---|---|---|
TSC | CSC | |||
Mean ± SD (Range) | CV (95%CI) | Mean ± SD (Range) | CV (95%CI) | |
Load (kg) | 62.8 ± 9.2 (50–82.5) | 14.6 (57.7–67.9) | 61.2 ± 11.5 (50–90) | 18.8 (54.8–67.5) |
MPVbest (m/s) | 0.5 ± 0.03 (0.45–0.55) | 6 (0.47–0.51) | 0.5 ± 0.03 (0.45–0.53) | 5.32 (0.48–0.49) |
MPVlast (m/s) * | 0.4 ± 0.02 (0.36–0.45) ‡ | 6.1 (0.38–0.41) | 0.5 ± 0.03 (0.41–0.53) | 6.7 (0.46–0.49) |
Velocity Loss (%) * | 19.9 ± 3.2 (14.9–26) | 16.2 (18.1–21.7) | 2.4 ± 4.8 (−4.44–10.6) | 197.9 (−0.23–5.07) |
CMJpre (cm) | 35.4 ± 4.4 (28.1–42.8) | 12.4 (32.9–37.8) | 34.4 ± 4.7 (27.2–42.2) | 13.5 (31.8–36.9) |
CMJpost (cm) | 32.6 ± 3.3 (24.8–38.7) | 10.2 (30.8–34.4) | 33.4 ± 4.5 (24.8–44.1) | 13.4 (31–35.9) |
DiffCMJ (cm) | 2.8 ± 2.8 (−1.94–9.29) | 103.3 (1.18–4.33) | 0.9 ± 2.9 (−2.65–7.33) | 311.3 (−0.67–2.52) |
Lactatepre (mmol/L) | 2.1 ± 0.6 (1.1–3.2) | 29.3 (1.74–2.41) | 1.9 ± 0.5 (1.1–2.8) | 27.8 (1.59–2.16) |
Lactatepost *(mmol/L) | 6.8 ± 3.2 (3–13.7) | 46.7 (5.03–8.54) | 3.2 ± 1.0 (1.8–5) | 31 (2.61–3.69) |
Difflact * (mmol/L) | 4.7 ± 3.1 (−10.5–0) | 66.6 (−6.44–(−2.47)) | 1.3 ± 0.7 (−2.2–0.6) | 57.7 (−1.69–(−0.87)) |
DOMS | 3.2 ± 2.5 (0–8) | 76.7(1.84–4.56) | 1.9 ± 2.1 (0–7) | 109.7 (0.76–3.11) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela-Olalla, D.; Romero-Caballero, A.; Del Campo-Vecino, J.; Balsalobre-Fernández, C. A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration. Sports 2020, 8, 45. https://doi.org/10.3390/sports8040045
Varela-Olalla D, Romero-Caballero A, Del Campo-Vecino J, Balsalobre-Fernández C. A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration. Sports. 2020; 8(4):45. https://doi.org/10.3390/sports8040045
Chicago/Turabian StyleVarela-Olalla, Daniel, Alejandro Romero-Caballero, Juan Del Campo-Vecino, and Carlos Balsalobre-Fernández. 2020. "A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration" Sports 8, no. 4: 45. https://doi.org/10.3390/sports8040045
APA StyleVarela-Olalla, D., Romero-Caballero, A., Del Campo-Vecino, J., & Balsalobre-Fernández, C. (2020). A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration. Sports, 8(4), 45. https://doi.org/10.3390/sports8040045