Different Lower-Limb Setup Positions Do Not Consistently Change Backstroke Start Time to 10 m
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Participant and Condition | Average Hip Angular Velocity (°/s) | Average Knee Angular Velocity (°/s) | Time of Hip Extension Onset (s) | Time of Knee Extension Onset (s) | Hip Angle during Setup (°) | Knee Angle during Setup (°) | Hip Height above Water during Setup (m) | Head Entry Distance (m) | Time to 10 m (s) |
---|---|---|---|---|---|---|---|---|---|
1 Extended | 620 | 310 | 0.17 | 0.16 | 72 | 46 | 0.12 | 2.0 | 5.18 |
1 Flexed | 620 | 320 | 0.17 | 0.17 | 70 | 35 | 0.12 | 2.2 | 5.15 |
2 Extended | 770 | 250 | 0.27 | 0.21 | 46 | 60 | 0.057 | 2.5 | 4.71 |
2 Flexed | 820 | 280 | 0.25 | 0.19 | 53 | 40 | 0.039 | 2.4 | 4.68 |
3 Extended | 670 | 240 | 0.19 | 0.23 | 52 | 60 | 0.12 | 2.1 | 5.42 |
3 Flexed | 660 | 280 | 0.17 | 0.23 | 62 | 36 | 0.071 | 2.0 | 5.57 |
4 Extended | 490 | 370 | 0.18 | 0.32 | 47 | 62 | 0.076 | 2.2 | 5.53 |
4 Flexed | 500 | 320 | 0.17 | 0.21 | 44 | 41 | 0.074 | 2.1 | 5.55 |
5 Extended | 530 | 280 | 0.21 | 0.17 | 89 | 58 | 0.26 | 2.2 | 5.37 |
5 Flexed | 530 | 330 | 0.13 | 0.14 | 79 | 41 | 0.18 | 2.0 | 5.41 |
6 Extended | 610 | 270 | 0.19 | 0.27 | 62 | 84 | 0.16 | 2.2 | 5.37 |
6 Flexed | 580 | 290 | 0.21 | 0.25 | 65 | 64 | 0.14 | 2.1 | 5.25 |
7 Extended | 670 | 270 | 0.25 | 0.21 | 79 | 57 | 0.25 | 2.2 | 4.20 |
7 Flexed | 680 | 310 | 0.17 | 0.17 | 78 | 43 | 0.21 | 2.1 | 4.23 |
8 Extended | 680 | 310 | 0.13 | 0.19 | 55 | 58 | 0.21 | 2.2 | 4.69 |
8 Flexed | 610 | 370 | 0.16 | 0.20 | 54 | 37 | 0.10 | 2.0 | 4.62 |
9 Extended | 700 | 260 | 0.21 | 0.23 | 55 | 76 | 0.26 | 2.5 | 4.38 |
9 Flexed | 710 | 280 | 0.17 | 0.21 | 60 | 55 | 0.23 | 2.4 | 4.33 |
10 Extended | 480 | 340 | 0.24 | 0.44 | 51 | 85 | 0.10 | 1.6 | 5.41 |
10 Flexed | 480 | 300 | 0.35 | 0.40 | 54 | 66 | 0.068 | 1.7 | 5.38 |
Appendix B
Participant and Condition | Hand Contact Time (s) | Hands Horizontal Impulse (Ns) | Hands Vertical Impulse (Ns) | Feet Horizontal Impulse (Ns) | Foot/Total Contact Time (s) | Feet Vertical Impulse (Ns) | Feet Peak Rate of Force Development (N/s) | Horizontal Takeoff Velocity (m/s) | Vertical Takeoff Velocity (m/s) | Net Takeoff Velocity (m/s) | COM Takeoff Angle (°) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 Extended | 0.30 | −64 | 47 | 0.70 | 280 | 210 | 40 | 3.2 | 0.46 | 3.3 | 8.2 |
1 Flexed | 0.35 | −60 | 51 | 0.79 | 300 | 240 | 40 | 3.6 | 0.47 | 3.6 | 7.5 |
2 Extended | 0.39 | −270 | 90 | 0.77 | 540 | 400 | 50 | 3.0 | 1.04 | 3.2 | 19 |
2 Flexed | 0.37 | −170 | 80 | 0.66 | 470 | 370 | 60 | 3.3 | 0.81 | 3.4 | 14 |
3 Extended | 0.39 | −180 | 26 | 0.69 | 390 | 340 | 27 | 2.9 | 0.60 | 2.9 | 12 |
3 Flexed | 0.37 | −170 | 41 | 0.73 | 400 | 340 | 48 | 3.1 | 0.69 | 3.2 | 13 |
4 Extended | 0.38 | −58 | 66 | 0.62 | 250 | 200 | 11 | 3.4 | 0.84 | 3.5 | 14 |
4 Flexed | 0.38 | −46 | 91 | 0.66 | 230 | 180 | 21 | 3.3 | 1.01 | 3.5 | 17 |
5 Extended | 0.31 | −60 | 16 | 0.59 | 220 | 220 | 45 | 3.0 | 0.31 | 3.0 | 6.0 |
5 Flexed | 0.28 | −35 | 26 | 0.54 | 220 | 180 | 11 | 3.4 | 0.37 | 3.4 | 6.2 |
6 Extended | 0.36 | −98 | 52 | 0.59 | 300 | 240 | 11 | 3.2 | 0.48 | 3.3 | 8.5 |
6 Flexed | 0.38 | −52 | 44 | 0.70 | 274 | 220 | 15 | 3.5 | 0.49 | 3.5 | 7.9 |
7 Extended | 0.35 | −90 | 47 | 0.64 | 330 | 300 | 76 | 3.3 | 0.58 | 3.4 | 10 |
7 Flexed | 0.33 | −91 | 54 | 0.61 | 340 | 280 | 62 | 3.5 | 0.48 | 3.5 | 7.9 |
8 Extended | 0.29 | −3.2 | 44 | 0.52 | 270 | 200 | 36 | 3.7 | 0.47 | 3.8 | 7.2 |
8 Flexed | 0.31 | −62 | 81 | 0.55 | 320 | 200 | 34 | 3.6 | 0.79 | 3.7 | 12 |
9 Extended | 0.36 | −16 | 78 | 0.58 | 310 | 260 | 44 | 3.9 | 0.74 | 4.0 | 11 |
9 Flexed | 0.42 | −33 | 120 | 0.63 | 370 | 290 | 53 | 4.5 | 0.80 | 4.6 | 10 |
10 Extended | 0.39 | −75 | 66 | 0.70 | 310 | 170 | 20 | 3.8 | 0.30 | 3.8 | 4.5 |
10 Flexed | 0.49 | −110 | 84 | 0.78 | 320 | 230 | 40 | 3.5 | 0.78 | 3.6 | 13 |
Appendix C
Participant and Condition | Glute Activity during Setup (%MVC) | Vastus Activity during Setup (%MVC) | Glute Activity Onset (s) | Vastus Activity Onset (s) | Peak Glute Activity during Push (%MVC) | Peak Vastus Activity during Push (%MVC) | Time to Peak Glute Activity (s) | Time to Peak Vastus Activity (s) | Glute Rate of Force Development (%MVC/s) | Vastus Rate of Force Development (%MVC/s) |
---|---|---|---|---|---|---|---|---|---|---|
1 Extended | 0.76 | 7.5 | 0.25 | 0.36 | 40 | 49 | 0.53 | 0.49 | 500 | 300 |
1 Flexed | 4.9 | 1.5 | 0.27 | 0.44 | 41 | 54 | 0.62 | 0.56 | 560 | 290 |
2 Extended | 0.03 | 12 | 0.22 | 0.51 | 54 | 58 | 0.71 | 0.52 | 640 | 310 |
2 Flexed | 0.22 | 2.3 | 0.23 | 0.39 | 44 | 93 | 0.60 | 0.43 | 310 | 490 |
3 Extended | 3.0 | 4.7 | 0.24 | 0.42 | 54 | 62 | 0.63 | 0.43 | 540 | 840 |
3 Flexed | 0.81 | 5.1 | 0.29 | 0.27 | 70 | 79 | 0.50 | 0.51 | 530 | 640 |
4 Extended | 4.2 | 2.9 | 0.32 | 0.40 | 49 | 64 | 0.61 | 0.58 | 450 | 340 |
4 Flexed | 4.2 | 3.4 | 0.32 | 0.38 | 63 | 63 | 0.58 | 0.58 | 670 | 440 |
5 Extended | 21 | 30 | 0.30 | 0.28 | 170 | 120 | 0.51 | 0.57 | 680 | 334 |
5 Flexed | 4.3 | 11 | 0.24 | 0.27 | 170 | 150 | 0.48 | 0.52 | 780 | 500 |
6 Extended | 6.8 | 29 | 0.30 | 0.31 | 74 | 120 | 0.58 | 0.55 | 240 | 360 |
6 Flexed | 6.0 | 16 | 0.34 | 0.37 | 60 | 100 | 0.60 | 0.54 | 230 | 430 |
7 Extended | 3.1 | 25 | 0.31 | 0.38 | 140 | 190 | 0.52 | 0.52 | 1000 | 810 |
7 Flexed | 1.2 | 6.3 | 0.29 | 0.39 | 110 | 160 | 0.51 | 0.46 | 910 | 890 |
8 Extended | 30 | 42 | 0.23 | 0.29 | 110 | 170 | 0.39 | 0.37 | 790 | 950 |
8 Flexed | 28 | 5.3 | 0.30 | 0.33 | 120 | 250 | 0.45 | 0.47 | 720 | 1400 |
9 Extended | 4.8 | 34 | 0.32 | 0.35 | 69 | 130 | 0.51 | 0.55 | 400 | 430 |
9 Flexed | 3.1 | 13 | 0.35 | 0.41 | 100 | 150 | 0.60 | 0.62 | 530 | 500 |
10 Extended | 1.6 | 24 | 0.37 | 0.30 | 22 | 96 | 0.38 | 0.53 | 250 | 450 |
10 Flexed | 3.4 | 23 | 0.40 | 0.42 | 80 | 120 | 0.62 | 0.77 | 370 | 280 |
References
- Swiss Timing. OBL2 Pro: Backstroke Ledge. Available online: http://www.swisstiming.com/fileadmin/Resources/Data/Datasheets/DOCM_AQ_OBL2_Pro_1015_EN.pdf (accessed on 28 March 2020).
- Ikeda, Y.; Ichikawa, H.; Nara, R.; Baba, Y.; Shimoyama, Y. Does installation of the backstroke start device reduce 15-m start time in swimming? J. Sports Sci. 2017, 35, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Barkwell, G.E.; Dickey, J.P. Backstroke start performance: The impact of using the Omega OBL2 backstroke ledge. Sports Biomech. 2018, 17, 429–441. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, K.; de Jesus, K.; Abraldes, J.A.; Medeiros, A.I.; Fernandes, R.J.; Vilas-Boas, J.P. Are the new starting block facilities beneficial for backstroke start performance? J. Sports Sci. 2016, 34, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Manz, W.; Greenshields, J.; Wright, B.; Goss, C.; Skutnik, B.; Stager, J. Head Depth and Head Speed During Competitive Backstroke Ledge Starts. Int. J. Aquat. Res. Educ. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, K.; De Jesus, K.; Goncalves, P.; Vasconcelos, M.O.; Medeiros, A.I.A.; Carvalho, D.A.D.; Fernandes, R.J.; Vilas-Boas, J.P. Lateral kinetic proficiency and asymmetry in backstroke start performed with horizontal and vertical handgrips. Sports Biomech. 2018, 1–15, in press. [Google Scholar] [CrossRef]
- Domire, Z.J.; Challis, J.H. Maximum height and minimum time vertical jumping. J. Biomech. 2015, 48, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, A.J.; Bobbert, M.F.; Van Ingen Schenau, G.J. A control strategy for the execution of explosive movements from varying starting positions. J. Neurophysiol. 1994, 71, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Domire, Z.J.; Challis, J.H. The influence of squat depth on maximal vertical jump performance. J. Sports Sci. 2007, 25, 193–200. [Google Scholar] [CrossRef]
- Challis, J.H.; Domire, Z.J. Insights to vertical jumping from computer simulations. Mov. Sport Sci. 2015, 90, 69–78. [Google Scholar] [CrossRef]
- Takeda, T.; Itoi, O.; Takagi, H.; Tsubakimoto, S. Kinematic analysis of the backstroke start: Differences between backstroke specialists and non-specialists. J. Sports Sci. 2014, 32, 635–641. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Influence of Muscle Slack on High-Intensity Sport Performance. Strength Cond. J. 2016, 38, 75–87. [Google Scholar] [CrossRef]
- de Jesus, K.; de Jesus, K.; Fernandes, R.J.; Vilas-Boas, J.P.; Sanders, R. The backstroke swimming start: State of the art. J. Hum. Kinet. 2014, 42, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benfield, R.D.; Newton, E.R.; Hortobagyi, T. Waterproofing EMG Instrumentation. Biol. Res. Nurs. 2007, 8, 195–201. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, K.; de Jesus, K.; Figueiredo, P.; Gonçalves, P.; Fernandes, R.J.; Vilas-Boas, J.P. Neuromuscular Activation in Swimming and Waterpolo. In Surface Electromyography: Fundamentals, Computational Techniques and Clinical Applications; Mitchell, D., Ed.; Nova Science Publishers: Hapac, NY, USA, 2016. [Google Scholar]
- Hohmann, A.; Fehr, U.; Kirsten, R.; Krueger, T. Biomechanical Analysis of the Backstroke Start Technique in Swimming. E-J. Beweg. und Train. 2008, 2, 28–33. Available online: https://static.springer.com/sgw/documents/758698/application/pdf/12662_ep_2_2008_7.pdf (accessed on 28 March 2020).
- Barkwell, G.E.; Dickey, J.P. The Effects of Plyometric Warm-up on Lower Limb Muscle Activity and Time to 10m in the Backstroke Swimming Start. Int. J. Hum. Mov. Sport Sci. 2018, 6, 55–62. [Google Scholar] [CrossRef]
- de Jesus, K.; de Jesus, K.; Medeiros, A.I.; Goncalves, P.; Figueiredo, P.; Fernandes, R.J.; Vilas-Boas, J.P. Neuromuscular Activity of Upper and Lower Limbs during two Backstroke Swimming Start Variants. J. Sports Sci. Med. 2015, 14, 591–601. Available online: https://www.jssm.org/volume14/iss3/cap/jssm-14-591.pdf (accessed on 28 March 2020).
- Thanopoulos, V.; Rozi, G.; Okicic, T.; Dopsaj, M.; Jorgic, B.; Madic, D.; Velickovic, S.; Milanovic, Z.; Spanou, F.; Batis, E. Differences in the efficiency between the grab and track starts for both genders in greek young swimmers. J. Hum. Kinet. 2012, 32, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, H.; Scurr, J.; Hencken, C.; Wood, L.; Graham-Smith, P. Biomechanical comparison of the track start and the modified one-handed track start in competitive swimming: An intervention study. J. Appl. Biomech. 2008, 24, 307–315. [Google Scholar] [CrossRef]
- Barlow, H.; Halaki, M.; Stuelcken, M.; Greene, A.; Sinclair, P.J. The effect of different kick start positions on OMEGA OSB11 blocks on free swimming time to 15m in developmental level swimmers. Hum. Mov. Sci. 2014, 34, 178–186. [Google Scholar] [CrossRef]
- Seifert, L.; Vantorre, J.; Lemaitre, F.; Chollet, D.; Toussaint, H.M.; Vilas-Boas, J.P. Different profiles of the aerial start phase in front crawl. J. Strength. Cond. Res. 2010, 24, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.; Bradshaw, E.J.; Pease, D.; Wilson, C. Is starting with the feet out of the water faster in backstroke swimming? Sports Biomech. 2014, 13, 154–165. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, K.; de Jesus, K.; Abraldes, J.A.; Mourao, L.; Borgonovo-Santos, M.; Medeiros, A.I.; Goncalves, P.; Chainok, P.; Fernandes, R.J.; Vaz, M.A.; et al. The effect of different foot and hand set-up positions on backstroke start performance. Sports Biomech. 2016, 15, 481–496. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, K.; de Jesus, K.; Figueiredo, P.; Goncalves, P.; Pereira, S.M.; Vilas-Boas, J.P.; Fernandes, R.J. Backstroke start kinematic and kinetic changes due to different feet positioning. J. Sports Sci. 2013, 31, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Federation Internationale de Natation (FINA). Swimming Rules. Available online: http://www.fina.org/sites/default/files/rules-print-pdf/7440.pdf (accessed on 28 March 2020).
- Federation Internationale de Natation (FINA). FINA Facilities Rules. Available online: http://www.fina.org/sites/default/files/rules-print-pdf/8458.pdf (accessed on 28 March 2020).
- SENIAM. Recommendations for Sensor Locations on Individual Muscles. Available online: http://seniam.org/sensor_location.htm (accessed on 28 March 2020).
- Winter, D.A. Chapter 2: Kinematics. In Biomechanics and Motor Control of Human Movement, 3rd ed.; Winter, D.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Santello, M.; McDonagh, M.J. The control of timing and amplitude of EMG activity in landing movements in humans. Exp. Physiol. 1998, 83, 857–874. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Sakurai, Y.; Akashi, K.; Kubo, Y. A Practical Estimation Method for Center of Mass Velocity in Swimming Direction During Front Crawl Swimming. J. Appl. Biomech. 2018, 34, 342–347. [Google Scholar] [CrossRef]
- Halaki, M.; Ginn, K. Normalization of EMG signals: To normalize or not to normalize and what to normalize to? In Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges; Naik, G.R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 175–194. [Google Scholar]
- Winter, D.A. Chapter 9: Kinesiological Electromyography. In Biomechanics and Motor Control of Human Movement, 3rd ed.; Winter, D.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. Available online: http://www.smj.org.sg/sites/default/files/4412/4412bs1.pdf. (accessed on 28 March 2020).
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Murrell, D.; Dragunas, A. A Comparison of Two Swimming Start Techniques from the Omega OSB11 Starting Block. WURJHNS 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Dragunas, A. Factors Affecting Block Performance from the Omega OSB11 Starting Platform. Ph.D. Thesis, the University of Western Ontario, London, ON, Canada, 2015. Available online: https://ir.lib.uwo.ca/etd/3131 (accessed on 28 March 2020).
- McLean, S.P.; Holthe, M.J.; Vint, P.F.; Beckett, K.D.; Hinrichs, R.N. Addition of an Approach to a Swimming Relay Start. J. Appl. Biomech. 2000, 16, 342–355. [Google Scholar] [CrossRef]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.H.; Franz, J.R. Activation-Dependent Changes in Soleus Length–Tension Behavior Augment Ankle Joint Quasi-Stiffness. J. Appl. Biomech. 2019, 35, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, R. Sex differences in relations of muscle power, lung function, and reaction time in athletes. Percept. Mot. Skills 2010, 110, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Formosa, D.P.; Sayers, M.G.; Burkett, B. Backstroke swimming: Exploring gender differences in passive drag and instantaneous net drag force. J. Appl. Biomech. 2013, 29, 662–669. [Google Scholar] [CrossRef]
Variable | Flexed | Extended | p Value | Effect Size (dz) |
---|---|---|---|---|
Average hip angular velocity (°/s) | 620 ± 100 | 620 ± 96 | 0.37 | −0.11 |
Average knee angular velocity (°/s) | 310 ± 29 | 290 ± 43 | 0.08 | 0.49 |
Time of hip extension onset (s) | 0.19 ± 0.06 | 0.20 ± 0.04 | 0.32 | −0.15 |
Time of knee extension onset (s) | 0.22 ± 0.07 | 0.24 ± 0.08 | 0.02 * | −0.75 ‡ |
Hip angle during setup (°) | 62 ± 11.4 | 60 ± 15 | 0.26 | −0.22 |
Knee angle during setup (°) | 46 ± 11 | 64 ± 13 | <0.01 * | 4.8 † |
Hip height above water during setup (m) | 0.12 ± 0.07 | 0.16 ± 0.08 | <0.01 * | 1.09 † |
Head entry distance (m) | 2.1 ± 0.21 | 2.2 ± 0.25 | 0.07 | −0.53 ‡ |
Time to 10 m (s) | 5.02 ± 0.50 | 5.03 ± 0.49 | 0.36 | −0.12 |
Variable | Flexed | Extended | p Value | Effect Size (dz) |
---|---|---|---|---|
Hand contact time (s) | 0.37 ± 0.06 | 0.35 ± 0.04 | 0.16 | 0.33 |
Hands horizontal impulse (Ns) | −83 ± 52 | −91 ± 78 | 0.28 | 0.19 |
Hands vertical impulse (Ns) | 67 ± 29 | 53 ± 23 | 0.02 * | 0.81 † |
Foot / total contact time (s) | 0.66 ± 0.09 | 0.64 ± 0.07 | 0.14 | 0.37 |
Feet horizontal impulse (Ns) | 330 ± 77 | 320 ± 90 | 0.34 | 0.13 |
Feet vertical impulse (Ns) | 250 ± 64 | 250 ± 72 | 0.49 | -0.01 |
Feet peak rate of force development (N/s) | 38 ± 18 | 36 ± 20 | 0.32 | 0.15 |
Horizontal takeoff velocity (m/s) | 3.5 ± 0.37 | 3.3 ± 0.34 | 0.03 * | 0.66 ‡ |
Vertical takeoff velocity (m/s) | 0.66 ± 0.21 | 0.58 ± 0.23 | 0.11 | 0.42 |
Net takeoff velocity (m/s) | 3.6 ± 0.37 | 3.4 ± 0.36 | 0.02 * | 0.78 ‡ |
COM takeoff angle (°) | 11 ± 3.4 | 10 ± 4.3 | 0.26 | 0.21 |
Variable | Flexed | Extended | p Value | Effect Size (dz) |
---|---|---|---|---|
Glute activity during setup (%MVC) | 5.6 ± 8.0 | 7.5 ± 9.8 | 0.15 | −0.36 |
Vastus activity during setup (%MVC) | 8.6 ± 6.9 | 21 ± 13 | <0.01 * | −1.05 † |
Glute activity onset (s) | 0.36 ± 0.06 | 0.35 ± 0.07 | 0.41 | 0.07 |
Vastus activity onset (s) | 0.30 ± 0.05 | 0.28 ± 0.05 | 0.08 | 0.49 |
Peak glute activity during push (%MVC) | 86 ± 40 | 79 ± 48 | 0.19 | 0.29 |
Peak vastus activity during push (%MVC) | 120 ± 57 | 110 ± 50 | 0.08 | 0.48 |
Time to peak glute activity (s) | 0.56 ± 0.06 | 0.54 ± 0.10 | 0.29 | 0.19 |
Time to peak vastus activity (s) | 0.55 ± 0.06 | 0.51 ± 0.06 | 0.14 | 0.39 |
Glute rate of force development (%MVC/s) | 560 ± 220 | 550 ± 240 | 0.40 | 0.08 |
Vastus rate of force development (%MVC/s) | 580 ± 330 | 510 ± 250 | 0.12 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkwell, G.E.; Dickey, J.P. Different Lower-Limb Setup Positions Do Not Consistently Change Backstroke Start Time to 10 m. Sports 2020, 8, 43. https://doi.org/10.3390/sports8040043
Barkwell GE, Dickey JP. Different Lower-Limb Setup Positions Do Not Consistently Change Backstroke Start Time to 10 m. Sports. 2020; 8(4):43. https://doi.org/10.3390/sports8040043
Chicago/Turabian StyleBarkwell, Gordon E., and James P. Dickey. 2020. "Different Lower-Limb Setup Positions Do Not Consistently Change Backstroke Start Time to 10 m" Sports 8, no. 4: 43. https://doi.org/10.3390/sports8040043
APA StyleBarkwell, G. E., & Dickey, J. P. (2020). Different Lower-Limb Setup Positions Do Not Consistently Change Backstroke Start Time to 10 m. Sports, 8(4), 43. https://doi.org/10.3390/sports8040043