Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Flow
2.2. Performance Endpoint
2.3. Metabolomic Analysis
2.4. Control Subjects
2.5. Statistical Analysis
3. Results
3.1. Participant and Control Characteristics
3.2. Phase I: Non-targeted Metabolomics
3.3. Phase II: Targeted Lipidomics
3.3.1. PC Levels and 161-km Finish Time
3.3.2. PC Levels in Race Participants vs. Non-athletic Controls
3.4. Phase II: Choline
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, R.; Blair, S.; Steven, N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Levine, B.D.; Myers, J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.H.; Kim, K. Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 2011, 8, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Mitmesser, S.H. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bye, A.; Vettukattil, R.; Aspenes, S.T.; Giskeødegård, G.F.; Gribbestad, I.S.; Wisløff, U.; Bathen, T.F. Serum Levels of Choline-Containing Compounds Are Associated with Aerobic Fitness Level: The HUNT-Study. PLoS ONE 2012, 7, e42330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floegel, A.; Wientzek, K.; Bachlechener, U.; Jacobs, S.; Drogan, D.; Prehn, C.; Adamski, J.; Krumsiek, J.; Pischon, T.; Boeing, H.; et al. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: Findings from a population-based study. Int. J. Obes. 2014, 38, 1388–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G.D.; Farrell, L.; Wood, M.J.; Martinovic, M.; Arany, Z.; Rowe, G.C.; Souza, A.; Cheng, S.; Yang, E.; Shi, X.; et al. Metabolic signatures of exercise in human plasma. Sci. Trans. Med. 2010, 2, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhsen, A.A.; Burleigh, M.; Daskalaki, E.; Zhang, T.; Easton, C.; Watson, D.G. Metabolomic profiling of submaximal exercise at a standardized relative intensity in healthy adults. Metabolites 2016, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafeiridis, A.; Chatziioannou, A.C.; Sarivasiliou, H.; Kyparos, A.; Nikolaidis, M.G.; Vrabas, I.S.; Theodoridis, G.A.; Pechlivanis, A.; Zoumpoulakis, P.; Baskakis, C.; et al. Global metabolic stress of isoeffort continuous and high intensity interval aerobic exercise: A comparative 1H NMR metabonomic study. J. Proteome Res. 2016, 15, 4452–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danaher, J.; Gerber, T.; Wellard, R.M.; Stathis, C.G.; Cooke, M.B. The use of metabolomics to monitor simultaneous changes in metabolic variables following supramaximal low volume high intensity exercise. Metabolomics 2016, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Mastrokolias, A.; Pool, R.; Mina, E.; Hettne, K.M.; van Duijn, E.; van der Mast, R.C.; van Ommen, G.; Hoen, P.; Prehn, C.; van Roon-Mom, W.; et al. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington’s disease peripheral blood samples. Metabolomics 2016, 12, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumhoff, E.A.; Masoner, D.; Dale, J.D. Preanalytic Laboratory Errors: Identification and Prevention. Available online: http://preq.in/images/Mayo.pdf (accessed on 15 February 2020).
- Newsom, S.A.; Brozinick, J.T.; Kiseljak-Vassiliades, K.; Strauss, A.N.; Bacon, S.D.; Kerege, A.A.; Bui, H.H.; Sanders, P.; Siddall, P.; Thomas, M.; et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans. J. Appl. Physiol. 2016, 120, 1355–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallner, S.; Schmitz, G. Pasmalogens: The neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 2011, 164, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Stefan, N.; Yu, Z.; Muhlenbruch, K.; Drogan, D.; Joost, H.G.; Roden, M.; Fritsche, A.; Häring, H.-U.; de Angelis, M.H.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using targeted metabolomics approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, E.P.; Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 1956, 222, 193–214. [Google Scholar] [PubMed]
- Sandage, B.W.; Sabounjian, R.N.; White, R.; Wurtman, R.J. Choline citrate may enhance athletic performance. Physiologist 1992, 35, 236. [Google Scholar]
- Jäger, R.; Purpura, M.; Kingsley, M. Phospholipids and sports performance. J. Int. Soc. Sports Nutr. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlay, L.A.; Wurtman, R.J.; Blusztajn, J.K.; Coviella, I.L.G.; Maher, T.J.; Evoniuk, G.E. Decreased Plasma Choline Concentrations in Marathon Runners. N. Engl. J. Med. 1986, 315, 892. [Google Scholar] [PubMed]
- Conlay, L.A.; Sabounjian, L.A.; Wurtman, R.J. Exercise and Neuromodulators: Choline and Acetylcholine in Marathon Runners. Int. J. Sports Med. 1992, 13, S141–S142. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Gant, N. Chapter 2.3—The Biochemistry of Choline. In Magnetic Resonance Spectroscopy; Academic Press: Cambridge, MA, USA, 2014; pp. 104–110. [Google Scholar]
- Li, Z.; Vance, D.E. Thematic Review Series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Høeg, T.B.; Chmiel, K.; Warrick, A.E.; Taylor, S.L.; Weiss, R.H. Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports 2020, 8, 44. https://doi.org/10.3390/sports8040044
Høeg TB, Chmiel K, Warrick AE, Taylor SL, Weiss RH. Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports. 2020; 8(4):44. https://doi.org/10.3390/sports8040044
Chicago/Turabian StyleHøeg, Tracy B., Kenneth Chmiel, Alexandra E. Warrick, Sandra L. Taylor, and Robert H. Weiss. 2020. "Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance" Sports 8, no. 4: 44. https://doi.org/10.3390/sports8040044
APA StyleHøeg, T. B., Chmiel, K., Warrick, A. E., Taylor, S. L., & Weiss, R. H. (2020). Ultramarathon Plasma Metabolomics: Phosphatidylcholine Levels Associated with Running Performance. Sports, 8(4), 44. https://doi.org/10.3390/sports8040044