Profiling Isokinetic Strength of Shoulder Rotator Muscles in Adolescent Asymptomatic Male Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Isokinetic Strength Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noffal, G.J. Isokinetic eccentric-to-concentric strength ratios of the shoulder rotator muscles in throwers and nonthrowers. Am. J. Sports Med. 2003, 31, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Jan, J.; Benkalfate, T.; Rochcongar, P. The impact of recurrent dislocation on shoulder rotator muscle balance (a prospective study of 102 male patients). Ann. Phys. Rehabil. Med. 2012, 55, 404–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohseni-Bandpei, M.A.; Keshavarz, R.; Minoonejhad, H.; Mohsenifar, H.; Shakeri, H. Shoulder pain in Iranian elite athletes: The prevalence and risk factors. J. Manip. Physiol. Ther. 2012, 35, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, G.; Hasslan, L.; Bahr, R.; Steffen, K. High prevalence of shoulder pain among elite Norwegian female handball players. Scand. J. Med. Sci. Sports 2013, 23, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Challoumas, D.; Stavrou, A.; Dimitrakakis, G. The volleyball athlete’s shoulder: Biomechanical adaptations and injury associations. Sports Biomech. 2017, 16, 220–237. [Google Scholar] [CrossRef]
- Jurkojć, J.; Michnik, R.; Czapla, K. Mathematical modelling as a tool to assessment of loads in volleyball player’s shoulder joint during spike. J. Sports Sci. 2017, 35, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.K.; Cochrane, T. Mobility impairment, muscle imbalance, muscle weakness, scapular asymmetry and shoulder injury in elite volleyball athletes. J. Sports Med. Phys. Fit. 2001, 41, 403–410. [Google Scholar]
- Stickley, C.D.; Hetzler, R.K.; Freemyer, B.G.; Kimura, I.F. Isokinetic peak torque ratios and shoulder injury history in adolescent female volleyball athletes. J. Athl. Train. 2008, 43, 571–577. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Davies, G.J. The application of isokinetics in testing and rehabilitation of the shoulder complex. J. Athl. Train. 2000, 35, 338–350. [Google Scholar]
- Hadzic, V.; Sattler, T.; Veselko, M.; Markovic, G.; Dervisevic, E. Strength Asymmetry of the Shoulders in Elite Volleyball Players. J. Athl. Train. 2014, 49, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Forthomme, B.; Croisier, J.-L.; Delvaux, F.; Kaux, J.-F.; Crielaard, J.-M.; Gleizes-Cervera, S. Preseason Strength Assessment of the Rotator Muscles and Shoulder Injury in Handball Players. J. Athl. Train. 2018, 53, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellenbecker, T.S.; Mattalino, A.J. Concentric isokinetic shoulder internal and external rotation strength in professional baseball pitchers. J. Orthop. Sports Phys. Ther. 1997, 25, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Andrade Mdos, S.; de Lira, C.A.; Vancini, R.L.; de Almeida, A.A.; Benedito-Silva, A.A.; da Silva, A.C. Profiling the isokinetic shoulder rotator muscle strength in 13- to 36-year-old male and female handball players. Phys. Ther. Sport 2013, 14, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.S.; Vancini, R.L.; de Lira, C.A.B.; Mascarin, N.C.; Fachina, R.J.F.G.; da Silva, A.C. Shoulder isokinetic profile of male handball players of the Brazilian National Team. Braz. J. Phys. Ther. 2013, 17, 572–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, E.K.L.; Ng, G.Y.F. Strength profiles of shoulder rotators in healthy sport climbers and nonclimbers. J. Athl. Train. 2009, 44, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Jobe, F.W.; Tibone, J.E.; Perry, J.; Moynes, D. An EMG analysis of the shoulder in throwing and pitching. Am. J. Sports Med. 1983, 11, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Jobe, F.W.; Moynes, D.R.; Tibone, J.E.; Perry, J. An EMG analysis of the shoulder in pitching. Am. J. Sports Med. 1984, 12, 218–220. [Google Scholar] [CrossRef]
- Glousman, R. Electromyographic analysis and its role in the athletic shoulder. Clin. Orthop. Relat. Res. 1993, 288, 27–34. [Google Scholar] [CrossRef]
- Yildiz, Y.; Aydin, T.; Sekir, U.; Kiralp, M.Z.; Hazneci, B.; Kalyon, T.A. Shoulder terminal range eccentric antagonist/concentric agonist strength ratios in overhead athletes. Scand. J. Med. Sci. Sports 2006, 16, 174–180. [Google Scholar] [CrossRef]
- Edouard, P.; Degache, F.; Oullion, R.; Plessis, J.-Y.; Gleizes-Cervera, S.; Calmels, P. Shoulder strength imbalances as injury risk in handball. Int. J. Sports Med. 2013, 34, 654–660. [Google Scholar] [CrossRef]
- Forthomme, B.; Crielaard, J.-M.; Croisier, J.-L. Scapular positioning in athlete’s shoulder: Particularities, clinical measurements and implications. Sports Med. 2008, 38, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Trakis, J.E.; McHugh, M.P.; Caracciolo, P.A.; Busciacco, L.; Mullaney, M.; Nicholas, S.J. Muscle Strength and Range of Motion in Adolescent Pitchers with Throwing-Related Pain. Am. J. Sports Med. 2008, 36, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Gozlan, G.; Bensoussan, L.; Coudreuse, J.-M.; Fondarai, J.; Gremeaux, V.; Viton, J.-M.; Delarque, A. Isokinetic dynamometer measurement of shoulder rotational strength in healthy elite athletes (swimming, volley-ball, tennis): Comparison between dominant and nondominant shoulder. Ann. Readapt. Med. Phys. 2006, 49, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Keays, G.; Friedman, D.; Gagnon, I. A 20-Year Comparison of Football-Related Injuries in American and Canadian Youth Aged 6 to 17 Years: A replication study. Clin. Pediatr. 2016, 55, 603–613. [Google Scholar] [CrossRef]
- Schache, A.G.; Bennell, K.L.; Blanch, P.D.; Wrigley, T. V The coordinated movement of the lumbo-pelvic-hip complex during running: A literature review. Gait Posture 1999, 10, 30–47. [Google Scholar] [CrossRef]
- Marko, M.; Neville, C.G.; Prince, M.A.; Ploutz-Snyder, L.L. Lower-extremity force decrements identify early mobility decline among community-dwelling older adults. Phys. Ther. 2012, 92, 1148–1159. [Google Scholar] [CrossRef]
- Mascarin, N.C.; Vancini, R.L.; Lira, C.A.B.; Andrade, M.S. Stretch-Induced Reductions in Throwing Performance Are Attenuated by Warm-up Before Exercise. J. Strength Cond. Res. 2015, 29, 1393–1398. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Cohen, J., Ed.; Lawrence Erlbaum Associates: New Jersey, NJ, USA, 1998. [Google Scholar]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef]
- Sugiura, Y.; Saito, T.; Sakuraba, K.; Sakuma, K.; Suzuki, E. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J. Orthop. Sports Phys. Ther. 2008, 38, 457–464. [Google Scholar] [CrossRef]
- Yeung, S.S.; Suen, A.M.Y.; Yeung, E.W. A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. Br. J. Sports Med. 2009, 43, 589–594. [Google Scholar] [CrossRef]
- Mihata, T.; Gates, J.; McGarry, M.H.; Lee, J.; Kinoshita, M.; Lee, T.Q. Effect of rotator cuff muscle imbalance on forceful internal impingement and peel-back of the superior labrum: A cadaveric study. Am. J. Sports Med. 2009, 37, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Codine, P.; Bernard, P.L.; Pocholle, M.; Herisson, C. Isokinetic strength measurement and training of the shoulder: Methodology and results. Ann. Readapt. Med. Phys. 2005, 48, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.D.S.; Fleury, A.M.; de Lira, C.A.B.; Dubas, J.P.; da Silva, A.C. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players. J. Sports Sci. 2010, 28, 743–749. [Google Scholar] [CrossRef] [PubMed]
Velocity °/s (Action Type) | D | ND | Contralateral Difference (%) | p Value | d Value (90% CI) |
---|---|---|---|---|---|
60 (con) | |||||
Absolute PT of IR (Nm) | 48.7 ± 13.7 | 43.9 ± 11.6 * | 7.3 ± 18.1 | 0.01 | 0.37 (0.14 to 0.60) |
Relative PT of IR (Nm/kg) | 66.8 ± 17.7 | 60.5 ± 15.9 * | 7.3 ± 18.1 | 0.01 | 0.37 (0.14 to 0.60) |
Absolute PT of ER (Nm) | 35.8 ± 11.0 | 35.0 ± 10.7 | 1.4 ± 13.3 | 0.40 | 0.07 (−0.07 to 0.21) |
Relative PT of ER (Nm/kg) | 48.6 ± 11.8 | 47.7 ± 12.5 | 1.4 ± 13.1 | 0.43 | 0.07 (−0.08 to 0.22) |
240 (con) | |||||
Absolute PT of IR (Nm) | 44.7 ± 11.2 | 41.1 ± 11.0 * | 7.1 ± 17.7 | 0.03 | 0.32 (0.08 to 0.56) |
Relative PT of IR (Nm/kg) | 61.4 ± 14.3 | 56.9 ± 15.8 * | 7.1 ± 17.7 | 0.04 | 0.29 (0.06 to 0.52) |
Absolute PT of ER (Nm) | 31.7 ± 9.1 | 30.7 ± 8.2 | 1.7 ± 13.9 | 0.26 | 0.11(−0.05 to 0.27) |
Relative PT of ER (Nm/kg) | 43.2 ± 10.3 | 41.9 ± 9.1 | 1.7 ± 13.9 | 0.25 | 0.13 (−0.05 to 0.32) |
240 (ecc) | |||||
Absolute PT of IR (Nm) | 66.5 ± 24.3 | 64.2 ± 21.3 | 1.2 ± 16.4 | 0.32 | 0.10 (−0.07 to 0.27) |
Absolute PT of ER (Nm) | 59.2 ± 16.3 | 57.7 ± 14.3 | 0.2 ± 16.5 | 0.44 | 0.09 (−0.11 to 0.29) |
Velocity (°/s) | D | ND | Contralateral Difference (%) | p Value | d Value (90% CI) |
---|---|---|---|---|---|
60 | |||||
Absolute TW of IR (J) | 59.0 ± 15.6 | 54.0 ± 16.0 | 6.4 ± 21.8 | 0.05 | 0.31 (0.05 to 0.37) |
Relative TW of IR (J/kg) | 81.2 ± 20.5 | 74.5 ± 22.1 * | 6.4 ± 21.8 | 0.04 | 0.31 (0.06 to 0.55) |
Absolute TW of ER (J) | 43.0 ± 13.0 | 41.8 ± 12.9 | 1.6 ± 17.2 | 0.42 | 0.09 (−0.10 to 0.28) |
Relative TW of ER (J/kg) | 58.4 ± 13.9 | 57.1 ± 15.7 | 1.6 ± 17.2 | 0.13 | 0.08 (−0.02 to 0.59) |
240 | |||||
Absolute TW of IR (J) | 51.4 ± 15.2 | 45.7 ± 13.9 * | 8.5 ± 23.2 | 0.03 | 0.39 (0.10 to 0.68) |
Relative TW of IR (J/kg) | 70.8 ± 20.0 | 63.3 ± 19.6 * | 8.5 ± 23.2 | 0.03 | 0.38 (0.10 to 0.66) |
Absolute TW of ER (J) | 35.1 ± 11.1 | 33.4 ± 9.9 | 2.8 ± 18.6 | 0.14 | 0.16 (−0.02 to 0.34) |
Relative TW of ER (J/kg) | 47.9 ± 12.6 | 45.6 ± 11.6 | 2.8 ± 18.6 | 0.14 | 0.19 (−0.02 to 0.40) |
Velocity (°/s) | D | ND | p Values | d Value (90% CI) |
---|---|---|---|---|
60 | ||||
CR (%) | 74.8 ± 14.3 | 80.1 ± 14.0 | 0.06 | 0.37 (0.05 to 0.69) |
240 | ||||
CR (%) | 71.4 ± 12.6 | 77.3 ± 19.2 | 0.14 | 0.36 (−0.04 to 0.76) |
FR (%) | 1.2 ± 0.4 | 1.3 ± 0.5 | 0.06 | 0.22 (0.02 to 0.41) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lira, C.A.B.; Vargas, V.Z.; Vancini, R.L.; Andrade, M.S. Profiling Isokinetic Strength of Shoulder Rotator Muscles in Adolescent Asymptomatic Male Volleyball Players. Sports 2019, 7, 49. https://doi.org/10.3390/sports7020049
de Lira CAB, Vargas VZ, Vancini RL, Andrade MS. Profiling Isokinetic Strength of Shoulder Rotator Muscles in Adolescent Asymptomatic Male Volleyball Players. Sports. 2019; 7(2):49. https://doi.org/10.3390/sports7020049
Chicago/Turabian Stylede Lira, Claudio Andre Barbosa, Valentine Zimermann Vargas, Rodrigo Luiz Vancini, and Marilia Santos Andrade. 2019. "Profiling Isokinetic Strength of Shoulder Rotator Muscles in Adolescent Asymptomatic Male Volleyball Players" Sports 7, no. 2: 49. https://doi.org/10.3390/sports7020049
APA Stylede Lira, C. A. B., Vargas, V. Z., Vancini, R. L., & Andrade, M. S. (2019). Profiling Isokinetic Strength of Shoulder Rotator Muscles in Adolescent Asymptomatic Male Volleyball Players. Sports, 7(2), 49. https://doi.org/10.3390/sports7020049