Heart Rate Variability Responses to an Undulating Resistance Training Program in Free-Living Conditions: A Case Study in a Collegiate Athlete
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malik, M. Heart rate variability. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Wolf, M.M.; Varigos, G.A.; Hunt, D.; Sloman, J.G. Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 1978, 2, 52–53. [Google Scholar] [PubMed]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Validity of the ithlete smart phone application for determining ultra-short-term heart rate variability. J. Hum. Kinet. 2013, 39, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J. Sports Sci. Med. 2014, 13, 535–541. [Google Scholar] [PubMed]
- Flatt, A.A.; Esco, M.R.; Nakamura, F.Y.; Plews, D.J. Interpreting daily heart rate variability changes in collegiate female soccer players. J. Sports Med. Phys. Fitness 2017, 57, 907–915. [Google Scholar] [PubMed]
- Le Meur, Y.; Pichon, A.; Schaal, K.; Louis, J.; Gueneron, J.; Vidal, P.P.; Hausswirth, C. Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med. Sci. Sports Exerc. 2013, 45, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Evaluating training adaptation with heart-rate measures: A methodological comparison. Int. J. Sports Physiol. Perform. 2013, 8, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Mendez-Villanueva, A.; Quod, M.J.; Poulos, N.; Bourdon, P. Determinants of the variability of heart rate measures during a competitive period in young soccer players. Eur. J. Appl. Physiol. 2010, 109, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.; Willardson, J.M.; Miranda, H.; Bentes, C.M.; Reis, V.M.; Simão, R. Influence of load intensity on postexercise hypotension and heart rate variability after a strength training session. J. Strength Cond. Res. 2015, 29, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.Y.; Pereira, L.A.; Rabelo, F.N.; Flatt, A.A.; Esco, M.R.; Bertollo, M.; Loturco, I. Monitoring weekly heart rate variability in futsal players during the preseason: The importance of maintaining high vagal activity. J. Sports Sci. 2016, 34, 2262–2268. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Endurance performance relates to resting heart rate and its variability: A case study of a collegiate male cross-country athlete. J. Am. Soc. Cytopathol. 2014, 22, 39–45. [Google Scholar]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur. J. Appl. Physiol. 2012, 112, 3729–3741. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K. Essentials of strength training and conditioning, 4th edition. Med. Sci. Sports Exerc. 2016, 48, 2073. [Google Scholar]
- Lander, J. Maximum based on reps. NSCA J. 1984, 6, 60–61. [Google Scholar]
- Richens, B.; Cleather, D.J. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol. Sport 2014, 31, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.I.R.; Gomes, P.S.C. Muscular strength and endurance tests: Reliability and prediction of one repetition maximum—Review and new evidence. Revista Brasileira de Medicina do Esporte 2003, 9, 325–335. [Google Scholar] [CrossRef]
- Hopkins, L.; Cochrane, J.; Mayhew, J.L. Prediction of arm and leg strength from the 7-10-RM before and after strength training on Nautilus machine weights. IAHPERD J. 1993, 33, 40–41. [Google Scholar]
- Mayhew, J.L.; Ball, T.E.; Bowen, J.C. Prediction of bench press lifting ability from submaximal repetitions before and after training. Sports Med. Train. Rehabil. 1992, 3, 195–201. [Google Scholar] [CrossRef]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Haff, G. Essentials of Strength Training and Conditioning; NSCA—National Strength & Conditioning Association: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Helms, E.R.; Cross, M.R.; Brown, S.R.; Storey, A.; Cronin, J.; Zourdos, M.C. Rating of perceived exertion as a method of volume autoregulation within a periodized program. J. Strength Cond. Res. 2018, 32, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.A.; Garver, M.J.; Dinyer, T.K.; Fairman, C.M.; Focht, B.C. Ratings of perceived exertion during acute resistance exercise performed at imposed and self-selected loads in recreationally trained women. J. Strength Cond. Res. 2017, 31, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Borg, E.; Kaijser, L. A comparison between three rating scales for perceived exertion and two different work tests. Scand. J. Med. Sci. Sports 2006, 16, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Hornikel, B.; Esco, M.R. Heart rate variability and psychometric responses to overload and tapering in collegiate sprint-swimmers. J. Sci. Med. Sport 2017, 20, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Heathers, J.A. Smartphone-enabled pulse rate variability: An alternative methodology for the collection of heart rate variability in psychophysiological research. Int. J. Psychophysiol. 2013, 89, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Heathers, J.A. Everything Hertz: Methodological issues in short-term frequency-domain HRV. Front Physiol. 2014, 5, 177. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Heart rate variability stabilization in athletes: Towards more convenient data acquisition. Clin. Physiol. Funct. Imaging 2016, 36, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Ray, C.A.; Downs, E.M.; Cooke, W.H. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects. J. Appl. Physiol. 2003, 94, 2212–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhart, H.; Tai, Y.L.; Fennell, C.; Mayo, X.; Kingsley, J.D. Autonomic modulation in older women: Using resistance exercise as a countermeasure. Int. J. Exerc. Sci. 2017, 10, 178–187. [Google Scholar] [PubMed]
- Kanegusuku, H.; Queiroz, A.C.; Silva, V.J.; de Mello, M.T.; Ugrinowitsch, C.; Forjaz, C.L. High-intensity progressive resistance training increases strength with no change in cardiovascular function and autonomic neural regulation in older adults. J. Aging Phys. Act. 2015, 23, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.M.; Levy, W.C.; Stratton, J.K. Exercise training and heart rate variability in older adult female subjects. Clin. Investig. Med. 2006, 29, 20–28. [Google Scholar] [PubMed]
- Cooke, W.H.; Carter, J.R. Strength training does not affect vagal-cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. Eur. J. Appl. Physiol. 2005, 93, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A.; Nakamura, F.Y. Initial weekly HRV response is related to the prospective change in VO2max in female soccer players. Int. J. Sports Med. 2016, 37, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Smartphone-derived heart-rate variability and training load in a women’s soccer team. Int. J. Sports Physiol. Perform. 2015, 10, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Fernhall, B. Advanced Cardiovascular Exercise Physiology; Human Kinetics Europe Ltd.: Leeds, UK, 2011. [Google Scholar]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Lentini, A.C.; McKelvie, R.S.; McCartney, N.; Tomlinson, C.W.; MacDougall, J.D. Left ventricular response in healthy young men during heavy-intensity weight-lifting exercise. J. Appl. Physiol. 1993, 75, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Falkel, J.E.; Fleck, S.J.; Murray, T.F. Comparison of central hemodynamics between powerlifters and bodybuilders during resistance exercise. J. Strength Cond. Res. 1992, 6, 24–35. [Google Scholar]
- Fleck, S.J.; Dean, L.S. Resistance-training experience and the pressor response during resistance exercise. J. Appl. Physiol. 1987, 63, 116–120. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, J.D.; Tuxen, D.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 1985, 58, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, R.C.; Quitério, R.J.; Takahashi, A.C.M.; Silva, E.; Martins, L.E.B.; Catai, A.M. High eccentric strength training reduces heart rate variability in healthy older men. Br. J. Sports Med. 2008, 42, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.C.; Melo, R.C.; Quitério, R.J.; Silva, E.; Catai, A.M. The effect of eccentric strength training on heart rate and on its variability during isometric exercise in healthy older men. Eur. J. Appl. Physiol. 2009, 105, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, K.S.; Fahs, C.A.; Shinsako, K.K.; Jae, S.Y.; Fernhall, B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3180–H3186. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of HR variability among men and women. Med. Sci. Sports Exerc. 2010, 42, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A.; Nakamura, F.Y. Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD. J. Strength Cond. Res. 2017, 31, 380–385. [Google Scholar] [PubMed]
Timeline | Squat | Bench | Deadlift |
---|---|---|---|
Pre | 118.2 | 95.5 | 140.9 |
Mid | 136.4 | 109.1 | 195.5 |
Post | 145.5 | 109.1 | 197.7 |
Mesocycle 1 (W1–W5) & Mesocycle 2 (W6–W10) | ||
Session 1 | Session 2 | Session 3 |
Back Squat | Bench Press | Deadlift |
DB Bench Press | Leg Press | DB Incline Press |
DB Rows | BB Low Rows | BB High Rows |
Back Extensions | DB RDLs | Back Extensions |
Forward Lunges | Lateral Lunges | Reverse Lunges |
Sit-ups | Hanging Leg Raises | Russian Twists |
Mesocycle 3 (W11–W14) & Mesocycle 4 (W15–W18) | ||
Session 1 | Session 2 | Session 3 |
Back Squat | Power Cleans | Push Press |
BB RDLs | Bench Press | Deadlift |
BB Incline Press | BB Rows | Pull-downs |
Pull-ups | Back Extensions | Back Extensions |
BB Forward Lunges | BB Lateral Lunges | BB Reverse Lunges |
AB Flexion Machine | Hanging Leg Raises | Russian Twists |
Timeline | Total Volume-Load (AUs) | Total Load (kgs) | Total Volume (Reps) | HRV | |||
---|---|---|---|---|---|---|---|
Sum | Sum | Sum | Mean | % Δ | CV | % Δ | |
BL | - | - | - | 77.79 | - | 16.40 | - |
Week 1 | 19,323.27 | 571.23 | 576 | 77.24 | 0.71 | 21.74 | −32.59 |
Week 2 | 24,150.00 | 643.18 | 612 | 74.01 | 4.86 | 13.31 | 18.85 |
Week 3 | 25,689.09 | 670.09 | 618 | 72.51 | 6.79 | 18.65 | −13.73 |
Week 4 | 30,302.73 | 648.50 | 667 | 70.41 | 9.49 | 12.58 | 23.29 |
Week 5 | 12,727.27 | 636.36 | 320 | 84.39 | −8.48 | 7.31 | 55.44 |
Week 6 | 21,954.00 | 758.32 | 480 | 75.26 | 3.25 | 16.05 | 2.12 |
Week 7 | 25,980.91 | 805.27 | 510 | 81.07 | −4.21 | 12.61 | 23.10 |
Week 8 | 23,759.45 | 691.68 | 540 | 86.56 | −11.27 | 13.73 | 16.30 |
Week 9 | 36,815.91 | 887.50 | 641 | 80.67 | −3.70 | 17.43 | −6.27 |
Week 10 | 14,181.82 | 886.36 | 272 | 77.90 | −0.14 | 10.50 | 35.97 |
Week 11 | 19,981.82 | 965.91 | 340 | 78.91 | −1.44 | 9.44 | 42.44 |
Week 12 | 21,186.36 | 1002.27 | 350 | - | - | - | - |
Week 13 | 21,320.45 | 1052.27 | 351 | 74.61 | 4.09 | 5.87 | 64.19 |
Week 14 | 14,400.00 | 1054.55 | 218 | 70.05 | 9.96 | 6.15 | 62.48 |
Week 15 | 22,702.27 | 1088.64 | 359 | 75.87 | 2.47 | 4.68 | 71.43 |
Week 16 | 23,902.27 | 1138.64 | 361 | 69.95 | 10.08 | 8.66 | 47.21 |
Week 17 | 24,431.82 | 1177.27 | 363 | 68.38 | 12.09 | 11.82 | 27.95 |
Week 18 | 25,443.18 | 1206.82 | 368 | 75.66 | 2.74 | 11.05 | 32.64 |
Time | RPE |
---|---|
Week 1 | 5.67 |
Week 2 | 6.67 |
Week 3 | 6.33 |
Week 4 | 8.00 |
Week 5 | 3.00 |
Week 6 | 5.00 |
Week 7 | 6.00 |
Week 8 | 7.33 |
Week 9 | 10.00 |
Week 10 | 4.00 |
Week 11 | 5.67 |
Week 12 | 6.67 |
Week 13 | 8.00 |
Week 14 | 4.00 |
Week 15 | 6.33 |
Week 16 | 7.67 |
Week 17 | 8.33 |
Week 18 | 9.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, C.J.; Wind, S.A.; Esco, M.R. Heart Rate Variability Responses to an Undulating Resistance Training Program in Free-Living Conditions: A Case Study in a Collegiate Athlete. Sports 2018, 6, 121. https://doi.org/10.3390/sports6040121
Holmes CJ, Wind SA, Esco MR. Heart Rate Variability Responses to an Undulating Resistance Training Program in Free-Living Conditions: A Case Study in a Collegiate Athlete. Sports. 2018; 6(4):121. https://doi.org/10.3390/sports6040121
Chicago/Turabian StyleHolmes, Clifton J., Stefanie A. Wind, and Michael R. Esco. 2018. "Heart Rate Variability Responses to an Undulating Resistance Training Program in Free-Living Conditions: A Case Study in a Collegiate Athlete" Sports 6, no. 4: 121. https://doi.org/10.3390/sports6040121
APA StyleHolmes, C. J., Wind, S. A., & Esco, M. R. (2018). Heart Rate Variability Responses to an Undulating Resistance Training Program in Free-Living Conditions: A Case Study in a Collegiate Athlete. Sports, 6(4), 121. https://doi.org/10.3390/sports6040121