Next Article in Journal
Comparison of Different Minimal Velocity Thresholds to Establish Deadlift One Repetition Maximum
Next Article in Special Issue
Red Spinach Extract Increases Ventilatory Threshold during Graded Exercise Testing
Previous Article in Journal
Relationships between Isometric Force-Time Characteristics and Dynamic Performance
Previous Article in Special Issue
Efficacy of Carbohydrate Ingestion on CrossFit Exercise Performance
Open AccessArticle

Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players

1
Department of Sport and Exercise Sciences, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, UK
2
Institute of Sport and Exercise Science, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
*
Author to whom correspondence should be addressed.
Sports 2017, 5(3), 69; https://doi.org/10.3390/sports5030069
Received: 10 August 2017 / Revised: 6 September 2017 / Accepted: 12 September 2017 / Published: 15 September 2017
(This article belongs to the Special Issue Clinical and Sports Nutrition)
It was observed previously that New Zealand blackcurrant (NZBC) extract reduced slowing of the maximal 15 m sprint speed during the Loughborough Intermittent Shuttle Test. We examined the effect of NZBC extract on the performance of the Running Based Anaerobic Sprint Test (RAST, 6 × 35-m sprints with 10 seconds passive recovery) in trained youth and recreationally active football players. Fifteen recreationally active (University team) (age: 20 ± 1 years, height: 174 ± 19 cm, body mass: 80 ± 13 kg) and nine trained youth players (English professional club) (age: 17 ± 0 years, height: 178 ± 8 cm, body mass: 69 ± 9 kg, mean ± SD) participated in three testing sessions. Prior to the RASTs, participants consumed two capsules of NZBC extract (600 mg∙day−1 CurraNZ®) or placebo (P) for 7 days (double blind, randomised, cross-over design, wash-out at least 14 days). Ability difference between groups was shown by sprint 1 time. In the placebo condition, trained youth players had faster times for sprint 1 (5.00 ± 0.05 s) than recreationally active players (5.42 ± 0.08 s) (p < 0.01). In trained youth players, there was a trend for an effect of NZBC extract (p = 0.10) on the slowing of the sprint 1 time. NZBC extract reduced slowing of the sprint 5 time (P: 0.56 ± 0.22 s; NZBC: 0.35 ± 0.25, p = 0.02) and this was not observed in recreationally active players (P: 0.57 ± 0.48 s; NZBC: 0.56 ± 0.33, p = 0.90). For fatigue index, expressed as a % change in fastest sprint time, there was a strong trend to be lower in both trained youth and recreationally active players combined by NZBC extract (P: −13 ± 7%; NZBC: −11 ± 6%, p = 0.06) with 12 participants (five trained youth) experiencing less fatigue. New Zealand blackcurrant extract seems to benefit repeated sprint performance only in trained football players. View Full-Text
Keywords: football; running sprints; fatigue; elite athletes; anthocyanins; polyphenols football; running sprints; fatigue; elite athletes; anthocyanins; polyphenols
Show Figures

Figure 1

MDPI and ACS Style

Godwin, C.; Cook, M.D.; Willems, M.E.T. Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports 2017, 5, 69.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop