Effects of Physiological Load on Kinematic Variables Related to Tennis Serve Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Variables
2.4. Overview of Measurement Procedures
2.5. Experimental Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, C.D.; McHugh, M.P. Performance Demands of Professional Male Tennis Players. Sports 2006, 40, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Kibler, B. The kinetic chain in tennis: Do you push or pull? Aspetar Sports Med. J. 2012, 1, 40–43. [Google Scholar]
- Whiteside, D.; Elliott, B.; Lay, B.; Reid, M. The effect of age on discrete kinematics of the elite female tennis serve. J. Appl. Biomech. 2013, 29, 573–582. [Google Scholar] [CrossRef]
- Fitzpatrick, A.; Stone, J.A.; Choppin, S.; Kelley, J. Important performance characteristics in elite clay and grass court tennis match-play. Int. J. Perform. Anal. Sport 2019, 19, 942–952. [Google Scholar] [CrossRef]
- Gillet, E.; Leroy, D.; Thouvarecq, R.; Stein, J.F. A notational analysis of elite tennis serve and serve-return strategies on slow surface. J. Strength Cond. Res. 2009, 23, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, M.S.; Ellenbecker, T.S. A performance evaluation of the tennis serve: Implications for strength, speed, power, and flexibility training. Strength Cond. J. 2011, 33, 22–30. [Google Scholar] [CrossRef]
- Jayanthi, N.; Esser, S. Racket sports. Curr. Sports Med. Rep. 2013, 12, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Fleisig, G.; Nicholls, R.; Escamilla, R. Technique effects on upper limb loading in the tennis serve. J. Sci. Med. Sport 2003, 6, 76–87. [Google Scholar] [CrossRef]
- Kovacs, M.; Ellenbecker, T. An 8-stage model for evaluating the tennis serve: Implications for performance enhancement and injury prevention. Sports Health 2011, 3, 504–513. [Google Scholar] [CrossRef]
- Elliott, B.; Marsh, T.; Blanksby, B. A three-dimensional cinematographic analysis of the tennis serve. Int. J. Sport Biomech. 1986, 2, 260–271. [Google Scholar] [CrossRef]
- Fleisig, G.; Nicholls, R.; Elliott, B.; Escamilla, R. Kinematics used by world class tennis players to produce high-velocity serves. Sports Biomech. 2003, 2, 51–64. [Google Scholar] [CrossRef]
- Reid, M.; Elliott, B.; Alderson, J. Shoulder joint loading in the high performance flat and kick tennis serves. Br. J. Sports Med. 2007, 41, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Wood, G.A. The biomechanics of the foot-up and foot-back tennis serve techniques. Aust. J. Sport Sci. 1983, 3, 3–6. [Google Scholar]
- Girard, O.; Micallef, J.P.; Millet, G. Influence of restricted knee motion during the flat first serve in tennis. J. Strength Cond. Res. 2007, 21, 950–957. [Google Scholar]
- Menayo, R.; Fuentes García, J.; Moreno Hernández, F.; Clemente, R.; García Calvo, T. Relación entre la velocidad de la pelota y la precisión en el servicio plano en tenis en jugadores de perfeccionamiento. Eur. J. Hum. Mov. 2008, 21, 17–30. [Google Scholar]
- Signorile, J.F.; Sandler, D.J.; Smith, W.N.; Stoutenberg, M.; Perry, A.C. Correlation analyses and regression modeling between isokinetic testing and on-court performance in competitive adolescent tennis players. J. Strength Cond. Res. 2005, 19, 519. [Google Scholar]
- Fett, J.; Ulbricht, A.; Ferrauti, A. Impact of physical performance and anthropometric characteristics on serve velocity in elite junior tennis players. J. Strength Cond. Res. 2020, 34, 192–202. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Fernandez-Fernandez, J.; Bishop, D.; Fernandez-Garcia, B.; Terrados, N. Activity patterns, blood lactate concentrations and ratings of perceived exertion during a professional singles tennis tournament. Br. J. Sports Med. 2007, 41, 296–300. [Google Scholar] [CrossRef]
- Kovacs, M.S. Tennis physiology: Training the competitive athlete. Sports Med. 2007, 37, 189–198. [Google Scholar] [CrossRef]
- García-Gonzálvez, S.; López-Plaza, D.; Abellán-Aynés, O. Influence of Competition on Anxiety and Heart Rate Variability in Young Tennis Players. Healthcare 2022, 10, 2237. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Maresh, C.M.; Kraemer, W.J.; Abraham, A.; Conroy, B.; Gabaree, C. Tennis: A Physiological Profile During Match Play. Int. J. Sports Med. 1991, 12, 474–479. [Google Scholar] [CrossRef]
- König, D.; Huonker, M.; Schmid, A.; Halle, M.; Berg, A.; Keul, J. Cardiovascular, Metabolic, and Hormonal Parameters in Professional Tennis Players. Med. Sci. Sports Exerc. 2001, 33, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Murias, J.M.; Lanatta, D.; Arcuri, C.R.; Laino, F.A. Metabolic and Functional Responses Playing Tennis on Different Surfaces. J. Strength Cond. Res. 2007, 21, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Lo, K.C.; Su, F.C. Skill level and forearm muscle fatigue effects on ball speed in tennis serve. Sports Biomech. 2019, 18, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Poire, B.; Killen, L.G.; Green, J.M.; O’Neal, E.K.; Renfroe, L.G. Effects of caffeine on tennis serve accuracy. Int. J. Exerc. Sci. 2019, 12, 1290–1300. [Google Scholar] [CrossRef]
- Menayo, R.; Sabido, R.; Fuentes, J.P.; Moreno, F.J.; Garcia, J.A. Simultaneous treatment effects in learning four tennis shots in contextual interference conditions. Percept. Mot. Skills 2010, 110, 661–673. [Google Scholar] [CrossRef]
- Hornery, D.J.; Farrow, D.; Mujika, I.; Young, W. Fatigue in tennis: Mechanisms of fatigue and effect on performance. Sports Med. 2007, 37, 199–212. [Google Scholar] [CrossRef]
- Davey, P.R.; Thorpe, R.D.; Williams, C. Fatigue decreases skilled tennis performance. J. Sports Sci. 2002, 20, 311–318. [Google Scholar] [CrossRef]
- Rota, S.; Morel, B.; Saboul, D.; Rogowski, I.; Hautier, C. Influence of fatigue on upper limb muscle activity and performance in tennis. J. Electromyogr. Kinesiol. 2014, 24, 90–97. [Google Scholar] [CrossRef]
- Mendez-Rebolledo, G.; Gatica-Rojas, V.; Guzman-Muñoz, E.; Martinez-Valdes, E.; Guzman-Venegas, R.; De La Rosa, F.J.B. Influence of Fatigue and Velocity on the Latency and Recruitment Order of Scapular Muscles. Sports 2018, 32, 80–86. [Google Scholar] [CrossRef]
- Rusdiana, A.; Abdullah, M.R.B.; Syahid, A.M. Backhand drive stroke technique in tennis: 3D biomechanical analysis approach. J. Phys. Educ. Sport 2022, 22, 2826–2832. [Google Scholar]
- Reid, M.; Giblin, G.; Whiteside, D. A kinematic comparison of the overhand throw and tennis serve in tennis players: How similar are they really? J. Sports Sci. 2015, 33, 713–723. [Google Scholar] [CrossRef]
- Busuttil, N.A.; Reid, M.; Connolly, M.; Dascombe, B.J.; Middleton, K.J. A kinematic analysis of the upper limb during the topspin double-handed backhand stroke in tennis. Sports Biomech. 2022, 21, 1046–1064. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Whiteside, D.; Elliott, B. Effect of skill decomposition on racket and ball kinematics of the elite junior tennis serve. Sports Biomech. 2010, 9, 296–303. [Google Scholar] [CrossRef]
- Fett, J.; Oberschelp, N.; Vuong, J.L.; Wiewelhove, T.; Ferrauti, A. Kinematic characteristics of the tennis serve from the ad and deuce court service positions in elite junior players. PLoS ONE 2021, 16, e0252650. [Google Scholar] [CrossRef]
- Tubez, F.; Forthomme, B.; Croisier, J.L.; Brüls, O.; Denoël, V.; Paulus, J.; Schwartz, C. Inter-session reliability of the tennis serve and influence of the laboratory context. J. Hum. Kinet. 2019, 66, 57–67. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ae, M.; Takenaka, S.; Fujii, N. Comparison of support leg kinetics between side-step and cross-step cutting techniques. Sports Biomech. 2014, 13, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Condello, G.; Kernozek, T.W.; Tessitore, A.; Foster, C. Biomechanical analysis of a change-of-direction task in collegiate soccer players. Int. J. Sports Physiol. Perform. 2016, 11, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Tubez, F.; Schwartz, C.; Croisier, J.L.; Brüls, O.; Denoël, V.; Paulus, J.; Forthomme, B. Evolution of the trophy position along the tennis serve player’s development. Sports Biomech. 2021, 20, 431–443. [Google Scholar] [CrossRef]
- Jacquier-Bret, J.; Gorce, P. Kinematics of the tennis serve using an optoelectronic motion capture system: Are there correlations between joint angles and racket velocity? Sensors 2024, 24, 3292. [Google Scholar] [CrossRef]
- Talaat, S.; Attaallah, M. Kinematic analysis of the whole body center of gravity trajectory and time structure of the tennis serve performance. J. Appl. Sports Sci. 2015, 5, 76–81. [Google Scholar]
- Whiteside, D.; Elliott, B.; Lay, B.; Reid, M. A kinematic comparison of successful and unsuccessful tennis serves across the elite development pathway. Hum. Mov. Sci. 2013, 32, 822–835. [Google Scholar] [CrossRef] [PubMed]
- De Leva, P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Cudejko, T.; Button, K.; Al-Amri, M. Validity and reliability of accelerations and orientations measured using wearable sensors during functional activities. Sci. Rep. 2022, 12, 14619. [Google Scholar] [CrossRef] [PubMed]
- Nijmeijer, E.M.; Heuvelmans, P.; Bolt, R.; Gokeler, A.; Otten, E.; Benjaminse, A. Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomech. 2023, 154, 111637. [Google Scholar] [CrossRef]
- Debertin, D.; Wargel, A.; Mohr, M. Reliability of Xsens IMU-Based Lower Extremity Joint Angles during In-Field Running. Sensors 2024, 24, 871. [Google Scholar] [CrossRef]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; De Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors 2017, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Schaffarczyk, M.; Rogers, B.; Reer, R.; Gronwald, T. Validity of the Polar H10 sensor for heart rate variability analysis during resting state and incremental exercise in recreational men and women. Sensors 2022, 22, 6536. [Google Scholar] [CrossRef]
- Perrotta, A.S.; Jeklin, A.T.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E.R. Validity of the Elite HRV smartphone application for examining heart rate variability in a field-based setting. J. Strength Cond. Res. 2017, 31, 2296–2302. [Google Scholar] [CrossRef]
- Smith, N.D.W.; Burke, D.J. Influence of angular position on radar gun peak cricket ball speed measurements. Sports Biomech. 2024, 23, 695–708. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; Ellenbecker, T.; Sanz-Rivas, D.; Ulbricht, A.; Ferrauti, A. Effects of a 6-week junior tennis conditioning program on service velocity. J. Sports Sci. Med. 2013, 12, 232–239. [Google Scholar] [PubMed]
- Alim, A.; Rismayanthi, C.; Yulianto, W.D.; Miftachurochmah, Y. The main physical factors in the serve accuracy of wheelchair tennis players. Sciences 2023, 11, 548–557. [Google Scholar] [CrossRef]
- Yapici, A.; Akyüz, Ö.; Doruk, M. The relationship between biomotoric properties and Hewitt test performance in 13–15 years old tennis players. J. Educ. Train. Stud. 2018, 6, 13–18. [Google Scholar] [CrossRef]
- Huggins, J.; DiCesare, C.; Carlonas, R.; Ford, K.; Caswell, S.V. Within- and between-Session Reliability of the Spider Drill Test to Assess Change of Direction Speed in Youth Tennis Athletes. Int. J. Sports Exerc. Med. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Wagner, H.; Pfusterschmied, J.; Tilp, M.; Landlinger, J.; Duvillard, S.P.; Müller, E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand. J. Med. Sci. Sports 2014, 24, 345–354. [Google Scholar] [CrossRef]
- Reid, M.; Whiteside, D.; Gilbin, G.; Elliott, B. Effect of a common task constraint on the body, racket, and ball kinematics of the elite junior tennis serve. Sports Biomech. 2012, 12, 15–22. [Google Scholar] [CrossRef]
- Reid, M.; Whiteside, D.; Elliott, B. Serving to different locations: Set-up, toss, and racket kinematics of the professional tennis serve. Sports Biomech. 2011, 10, 407–414. [Google Scholar] [CrossRef]
- Martin, C.; Kulpa, R.; Delamarche, P.; Bideau, B. Professional tennis players’ serve: Correlation between segmental angular momentums and ball velocity. Sports Biomech. 2013, 12, 2–14. [Google Scholar] [CrossRef]
- Gomes, R.V.; Cunha, V.C.; Zourdos, M.C.; Aoki, M.S.; Moreira, A.; Fernandez-Fernandez, J.; Capitani, C.D. Physiological responses of young tennis players to training drills and simulated match play. J. Strength Cond. Res. 2016, 30, 851–858. [Google Scholar] [CrossRef]
- Maquirriain, J.; Baglione, R.; Cardey, M. Male professional tennis players maintain constant serve speed and accuracy over long matches on grass courts. Eur. J. Sport Sci. 2016, 16, 845–849. [Google Scholar] [CrossRef]
Var | Jump_H | Pelvis_V | Wrist_H | Wrist_V | ||||
Rep | Mean | St.dev | Mean | St.dev | Mean | St.dev | Mean | St.dev |
1 | 20.03 | 5.56 | 1.89 | 0.27 | 213.22 | 11.16 | 8.91 | 1.51 |
2 | 19.81 | 5.64 | 1.94 | 0.26 | 211.62 | 13.09 | 8.63 | 2.06 |
3 | 18.83 | 6.36 | 1.96 | 0.28 | 210.41 | 12.99 | 8.00 | 1.98 |
4 | 18.36 | 6.05 | 1.95 | 0.24 | 210.93 | 12.46 | 8.41 | 1.97 |
5 | 17.26 | 6.37 | 1.88 | 0.30 | 211.47 | 10.65 | 8.43 | 2.16 |
6 | 15.38 | 7.54 | 1.86 | 0.29 | 209.71 | 12.52 | 9.13 | 2.10 |
Var | Upper_arm_V | Forearm_V | Shoul_V | Serve_V | ||||
Rep | Mean | St.dev | Mean | St.dev | Mean | St.dev | Mean | St.dev |
1 | 3.32 | 0.45 | 7.30 | 0.98 | 2.58 | 0.65 | 178.44 | 8.46 |
2 | 3.26 | 0.51 | 7.00 | 1.13 | 2.39 | 0.71 | 179.63 | 10.63 |
3 | 3.27 | 0.77 | 6.70 | 1.81 | 2.35 | 0.81 | 180.87 | 9.47 |
4 | 3.06 | 0.86 | 6.38 | 2.33 | 2.31 | 0.88 | 179.24 | 10.66 |
5 | 3.33 | 0.56 | 6.59 | 1.45 | 2.38 | 0.69 | 176.37 | 11.49 |
6 | 3.37 | 0.63 | 6.84 | 1.50 | 2.65 | 0.83 | 175.16 | 12.22 |
Jump_H | Pelvis_V | ||||||||||||
Interaction | {1} | {2} | {3} | {4} | {5} | {6} | Interaction | {1} | {2} | {3} | {4} | {5} | {6} |
1 | 1.00 | 0.25 | 0.03 * | 0.00 * | 0.00 * | 1 | 0.05 | 0.00 * | 0.02 * | 1.00 | 0.62 | ||
2 | 1.00 | 0.49 | 0.09 | 0.00 * | 0.00 * | 2 | 0.05 | 0.97 | 1.00 | 0.03 * | 0.00 * | ||
3 | 0.25 | 0.49 | 0.96 | 0.05 | 0.00 * | 3 | 0.00 * | 0.97 | 1.00 | 0.00 * | 0.00 * | ||
4 | 0.03 * | 0.09 | 0.96 | 0.34 | 0.00 * | 4 | 0.02 * | 1.00 | 1.00 | 0.01 * | 0.00 * | ||
5 | 0.00 * | 0.00 * | 0.05 | 0.34 | 0.01 * | 5 | 1.00 | 0.03 * | 0.00 * | 0.01 * | 0.77 | ||
6 | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.01 * | 6 | 0.62 | 0.00 * | 0.00 * | 0.00 * | 0.77 | ||
Wrist_H | Wrist_V | ||||||||||||
Interaction | {1} | {2} | {3} | {4} | {5} | {6} | Interaction | {1} | {2} | {3} | {4} | {5} | {6} |
1 | 0.10 | 0.00 * | 0.00 * | 0.05 | 0.00 * | 1 | 0.91 | 0.02 * | 0.48 | 0.53 | 0.98 | ||
2 | 0.10 | 0.37 | 0.88 | 1.00 | 0.03 * | 2 | 0.91 | 0.24 | 0.97 | 0.98 | 0.49 | ||
3 | 0.00 * | 0.37 | 0.96 | 0.52 | 0.87 | 3 | 0.02 * | 0.24 | 0.71 | 0.67 | 0.00 * | ||
4 | 0.00 * | 0.88 | 0.96 | 0.95 | 0.36 | 4 | 0.48 | 0.97 | 0.71 | 1.00 | 0.12 | ||
5 | 0.05 | 1.00 | 0.52 | 0.95 | 0.05 | 5 | 0.53 | 0.98 | 0.67 | 1.00 | 0.14 | ||
6 | 0.00 * | 0.03 * | 0.87 | 0.36 | 0.05 | 6 | 0.98 | 0.49 | 0.00 * | 0.12 | 0.14 | ||
Upper_arm_V | Forearm_V | ||||||||||||
Interaction | {1} | {2} | {3} | {4} | {5} | {6} | Interaction | {1} | {2} | {3} | {4} | {5} | {6} |
1 | 0.99 | 1.00 | 0.12 | 1.00 | 1.00 | 1 | 0.73 | 0.06 | 0.00 * | 0.01 * | 0.25 | ||
2 | 0.99 | 1.00 | 0.38 | 0.99 | 0.91 | 2 | 0.73 | 0.73 | 0.04 * | 0.38 | 0.97 | ||
3 | 1.00 | 1.00 | 0.33 | 0.99 | 0.94 | 3 | 0.06 | 0.73 | 0.64 | 0.99 | 0.99 | ||
4 | 0.12 | 0.38 | 0.33 | 0.11 | 0.04 * | 4 | 0.00 * | 0.04 * | 0.64 | 0.92 | 0.26 | ||
5 | 1.00 | 0.99 | 0.99 | 0.11 | 1.00 | 5 | 0.01 * | 0.38 | 0.99 | 0.92 | 0.86 | ||
6 | 1.00 | 0.91 | 0.94 | 0.04 * | 1.00 | 6 | 0.25 | 0.97 | 0.99 | 0.26 | 0.86 | ||
Shoul_V | Serve_V | ||||||||||||
Interaction | {1} | {2} | {3} | {4} | {5} | {6} | Interaction | {1} | {2} | {3} | {4} | {5} | {6} |
1 | 0.21 | 0.05 | 0.01 * | 0.17 | 0.96 | 1 | 0.76 | 0.07 | 0.94 | 0.18 | 0.00 * | ||
2 | 0.21 | 0.99 | 0.91 | 1.00 | 0.03 * | 2 | 0.76 | 0.72 | 1.00 | 0.00 * | 0.00 * | ||
3 | 0.05 | 0.99 | 1.00 | 1.00 | 0.00 * | 3 | 0.07 | 0.72 | 0.44 | 0.00 * | 0.00 * | ||
4 | 0.01 * | 0.91 | 1.00 | 0.94 | 0.00 * | 4 | 0.94 | 1.00 | 0.44 | 0.01 * | 0.00 * | ||
5 | 0.17 | 1.00 | 1.00 | 0.94 | 0.02 * | 5 | 0.18 | 0.00 * | 0.00 * | 0.01 * | 0.74 | ||
6 | 0.96 | 0.03 * | 0.00 * | 0.00 * | 0.02 * | 6 | 0.00 * | 0.00 * | 0.00 * | 0.00 * | 0.74 |
Series | SA | HR |
---|---|---|
1 | 18.43 | 147.43 bpm |
2 | 21.00 | 156.00 bpm |
3 | 20.43 | 161.00 bpm |
4 | 14.71 | 164.14 bpm |
5 | 19.43 | 164.29 bpm |
6 | 15.29 | 164.71 bpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilić, Z.; Očić, M.; Dukarić, V.; Petrinović, L.; Barbaros, P. Effects of Physiological Load on Kinematic Variables Related to Tennis Serve Performance. Sports 2025, 13, 197. https://doi.org/10.3390/sports13070197
Bilić Z, Očić M, Dukarić V, Petrinović L, Barbaros P. Effects of Physiological Load on Kinematic Variables Related to Tennis Serve Performance. Sports. 2025; 13(7):197. https://doi.org/10.3390/sports13070197
Chicago/Turabian StyleBilić, Zlatan, Mateja Očić, Vedran Dukarić, Lidija Petrinović, and Petar Barbaros. 2025. "Effects of Physiological Load on Kinematic Variables Related to Tennis Serve Performance" Sports 13, no. 7: 197. https://doi.org/10.3390/sports13070197
APA StyleBilić, Z., Očić, M., Dukarić, V., Petrinović, L., & Barbaros, P. (2025). Effects of Physiological Load on Kinematic Variables Related to Tennis Serve Performance. Sports, 13(7), 197. https://doi.org/10.3390/sports13070197