The Effect of Physical Activity Levels on Cognitive Performance: Research in Portuguese Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.2.1. Cognitive Performance
2.2.2. Physical Activity
2.2.3. Socioeconomic Status
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katzmarzyk, P.T.; Friedenreich, C.; Shiroma, E.J.; Lee, I.-M. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br. J. Sports Med. 2021, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rodríguez, A.; Gostian-Ropotin, L.A.; Beltrán-Velasco, A.I.; Belando-Pedreño, N.; Simón, J.A.; López-Mora, C.; Navarro-Jiménez, E.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Sporting Mind: The Interplay of Physical Activity and Psychological Health. Sports 2024, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Chauhan, P.; Singh, G.; Malhotra, N.; Chahal, A. Physical Activity for Health and Fitness: Past, Present and Future. J. Lifestyle Med. 2022, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Ciaccioni, S.; Thomas, G.; Vergeer, I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2018, 42, 146–155. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, A.; Oliveira-Santos, J.M.; Santos, R.; Ribeiro, J.C.; Santos, M.P.; Coelho-E-Silva, M.; Raimundo, A.M.; Sardinha, L.B.; Mota, J. Results from Portugal’s 2022 report card on physical activity for children and youth. J. Exerc. Sci. Fit. 2023, 21, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Pogrmilovic, B.K.; Varela, A.R.; Pratt, M.; Milton, K.; Bauman, A.; Biddle, S.J.H.; Pedisic, Z. National physical activity and sedentary behaviour policies in 76 countries: Availability, comprehensiveness, implementation, and effectiveness. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Dos Santos, C.S.; Picoito, J.; Loureiro, I.; Nunes, C. Clustering of health-related behaviours and its relationship with individual and contextual factors in Portuguese adolescents: Results from a cross-sectional study. BMC Pediatr. 2020, 20, 247. [Google Scholar] [CrossRef]
- Marques, A.; Peralta, M.; Santos, T.; Martins, J.; de Matos, M.G. Self-rated health and health-related quality of life are related with adolescents’ healthy lifestyle. Public Health 2019, 170, 89–94. [Google Scholar] [CrossRef]
- Koorts, H.; Eakin, E.; Estabrooks, P.; Timperio, A.; Salmon, J.; Bauman, A. Implementation and scale up of population physical activity interventions for clinical and community settings: The PRACTIS guide. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 51. [Google Scholar] [CrossRef]
- Marques, A.; Corrales, F.R.; Martins, J.; Catunda, R.; Sarmento, H. Association between physical education, school-based physical activity, and academic performance: A systematic review. Retos 2017, 31, 316–320. [Google Scholar]
- James, J.; Pringle, A.; Mourton, S.; Roscoe, C.M.P. The Effects of Physical Activity on Academic Performance in School-Aged Children: A Systematic Review. Children 2023, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Cöster, M.E.; Rosengren, B.E.; Karlsson, C.; Karlsson, M.K. Daily School Physical Activity Improves Academic Performance. Sports 2020, 8, 83. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Lercher, P.; Vincens, N.; Persson Waye, K.; Klatte, M.; Leist, L.; Lachmann, T.; Schreckenberg, D.; Belke, C.; Ristovska, G.; et al. Protective effect of restorative possibilities on cognitive function and mental health in children and adolescents: A scoping review including the role of physical activity. Environ. Res. 2023, 233, 116452. [Google Scholar] [CrossRef] [PubMed]
- Lundbye-Jensen, J.; Skriver, K.; Nielsen, J.B.; Roig, M. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children. Front. Hum. Neurosci. 2017, 11, 182. [Google Scholar] [CrossRef]
- Serra, L.; Raimondi, S.; Di Domenico, C.; Maffei, S.; Lardone, A.; Liparoti, M.; Sorrentino, P.; Caltagirone, C.; Petrosini, L.; Mandolesi, L. The beneficial effects of physical exercise on visuospatial working memory in preadolescent children. AIMS Neurosci. 2021, 8, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Di Corrado, D.; Guarnera, M.; Guerrera, C.S.; Maldonato, N.M.; Di Nuovo, S.; Castellano, S.; Coco, M. Mental Imagery Skills in Competitive Young Athletes and Non-athletes. Front. Psychol. 2020, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Antunes, H.; Alves, R.; Correia, A.L.; Lopes, H.; Sabino, B.; Marques, A.; Ihle, A.; Gouveia, É.R. Association between the Duration of the Active Commuting to and from School, and Cognitive Performance in Urban Portuguese Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 15692. [Google Scholar] [CrossRef] [PubMed]
- Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, O.; Gauthier, C.J.; Fraser, S.A.; Desjardins-Crèpeau, L.; Desjardins, M.; Mekary, S.; Lesage, F.; Hoge, R.D.; Pouliot, P.; Bherer, L. Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front. Hum. Neurosci. 2015, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Dorsman, K.A.; Weiner-Light, S.; Staffaroni, A.M.; Brown, J.A.; Wolf, A.; Cobigo, Y.; Walters, S.; Kramer, J.H.; Casaletto, K.B. Get Moving! Increases in Physical Activity Are Associated with Increasing Functional Connectivity Trajectories in Typically Aging Adults. Front. Aging Neurosci. 2020, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Logan, N.E.; Shigeta, T.T. A Review of Acute Physical Activity Effects on Brain and Cognition in Children. Transl. J. Am. Coll. Sports Med. 2019, 4, 132–136. [Google Scholar] [CrossRef]
- Martins, R.M.G.; Duncan, M.J.; Clark, C.C.T.; Eyre, E.L.J. Exploring the Acute Effects of the Daily Mile™ vs. Shuttle Runs on Children’s Cognitive and Affective Responses. Sports 2022, 10, 142. [Google Scholar] [CrossRef]
- Ihle, A.; Gouveia, É.R.; Gouveia, B.R.; Kliegel, M. The Cognitive Telephone Screening Instrument (COGTEL): A Brief, Reliable, and Valid Tool for Capturing Interindividual Differences in Cognitive Functioning in Epidemiological and Aging Studies. Dement. Geriatr. Cogn. Dis. Extra 2017, 7, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Kliegel, M.; Martin, M.; Jäger, T. Development and Validation of the Cognitive Telephone Screening Instrument (COGTEL) for the Assessment of Cognitive Function Across Adulthood. J. Psychol. 2007, 141, 147–170. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, B.R.; Gouveia, É.R.; Kliegel, M.; Lopes, H.; Rodrigues, A.; Marques, A.; Correia, A.L.; Alves, R.; Ihle, A. Face-to-face Assessment of COGTEL in Adolescents: Test-Retest Reliability and Association with School Grades. Rev. Latinoam. de Psicol. 2020, 52, 169–175. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K. A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health 2018, 18, 323. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Grammer, J.K.; Coffman, J.L.; Ornstein, P.A.; Morrison, F.J. Change Over Time: Conducting Longitudinal Studies of Children’s Cognitive Development. J. Cogn. Dev. 2013, 14, 515–528. [Google Scholar] [CrossRef] [PubMed]
- von Stumm, S.; Plomin, R. Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence 2015, 48, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Strauß, H.; Venables, P.; Zentner, M. Associations between early childhood poverty and cognitive functioning throughout childhood and adolescence: A 14-year prospective longitudinal analysis of the Mauritius Child Health Project. PLoS ONE 2023, 18, e0278618. [Google Scholar] [CrossRef]
- González-Fernández, F.T.; Delgado-García, G.; Coll, J.S.; Silva, A.F.; Nobari, H.; Clemente, F.M. Relationship between cognitive functioning and physical fitness in regard to age and sex. BMC Pediatr. 2023, 23, 204. [Google Scholar] [CrossRef]
- Dumontheil, I. Adolescent brain development. Curr. Opin. Behav. Sci. 2016, 10, 39–44. [Google Scholar] [CrossRef]
- Ciccia, A.H.; Meulenbroek, P.; Turkstra, L.S. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury. Top. Lang. Disord. 2009, 29, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Herting, M.M.; Chu, X. Exercise, cognition, and the adolescent brain. Birth Defects Res. 2017, 109, 1672–1679. [Google Scholar] [CrossRef]
- Altermann, W.; Gröpel, P. Physical fitness is related to concentration performance in adolescents. Sci. Rep. 2024, 14, 587. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, T.M.; Williamson, W.; Johansen-Berg, H.; Dawes, H.; Roberts, N.; Foster, C.; Sexton, C.E. A critical evaluation of systematic reviews assessing the effect of chronic physical activity on academic achievement, cognition and the brain in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, L.S.; Damsgaard, L.; Stolpe, M.N.; Melcher, J.N.S.; Wienecke, J.; Nielsen, G.; Smedegaard, S.; Henriksen, A.H.; Hansen, R.A.; Hillman, C.H.; et al. Study protocol for the ACTIVE SCHOOL study investigating two different strategies of physical activity to improve academic performance in Schoolchildren. BMC Pediatr. 2024, 24, 174. [Google Scholar] [CrossRef]
- Turner, A. How Many Smartphones Are in the World? 2024. Available online: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (accessed on 5 February 2024).
- Liza, M.M.; Iktidar, M.A.; Roy, S.; Jallow, M.; Chowdhury, S.; Tabassum, M.N.; Mahmud, T. Gadget addiction among school-going children and its association to cognitive function: A cross-sectional survey from Bangladesh. BMJ Paediatr. Open 2023, 7, e001759. [Google Scholar] [CrossRef] [PubMed]
- Wilmer, H.H.; Sherman, L.E.; Chein, J.M. Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning. Front. Psychol. 2017, 8, 605. [Google Scholar] [CrossRef]
- Syvaoja, H.J.; Kankaanpaa, A.; Hakonen, H.; Inkinen, V.; Kulmala, J.; Joensuu, L.; Rasanen, P.; Hillman, C.H.; Tammelin, T.H. How physical activity, fitness, and motor skills contribute to math performance: Working memory as a mediating factor. Scand. J. Med. Sci. Sports 2021, 31, 2310–2321. [Google Scholar] [CrossRef]
- Heijnen, S.; Hommel, B.; Kibele, A.; Colzato, L.S. Neuromodulation of Aerobic Exercise—A Review. Front. Psychol. 2016, 6, 1890. [Google Scholar] [CrossRef]
Cognitive Performance | Task | Score |
---|---|---|
Prospective memory | Quantified with an event-based task. Intention is formed at the beginning of the interview; | 0 or 1 |
Verbal short memory | Word pair association test, with immediate recall; | 0 to 8 |
Verbal long-term memory | With the same pairs of words as in the short-term verbal memory test but with a delayed retrieval at the end of the interview; | 0 to 8 |
Working memory | Report in reverse order using a sequence of numbers; | 0 to 12 |
Verbal fluency | Indicate the largest number of words beginning with a given letter in 1 min; | 0 to unlimited |
Inductive reasoning | Based on a sequence of 5 numbers, built according to a mathematical rule, the participants had to indicate the sixth number in the sequence; | 0 to 8 |
Total score | Total score = 7.2 × prospective memory + 1.0 × verbal short-term memory + 0.9 × verbal long-term memory + 0.8 × working memory + 0.2 × verbal fluency + 1.7 × inductive reasoning score | - |
Total | ||
---|---|---|
Sex | Men, n (%) | 154 (42.1%) |
Women, n (%) | 212 (57.9%) | |
Age | Age (years) | 15.5 ± 1.6 |
Scholarly | Middle school, n (%) | 123 (33.6%) |
High school, n (%) | 243 (66.5% | |
School social support | 1 (low). n (%) | 174 (47.5%) |
2. n (%) | 74 (20.2%) | |
3. n (%) | 36 (9.8%) | |
4 (high). n (%) | 82 (22.4%) | |
Physical Activity (%) | Sedentary (%) | 74.8 ± 2.9 |
Light (%) | 17.7 ± 1.5 | |
Moderate (%) | 6.6 ± 2.1 | |
Vigorous (%) | 0.8 ± 0.5 | |
Very Vigorous (%) | 0.1 ± 0.2 | |
Cognitive Performance | Prospective memory | 0.8 ± 0.40 |
Verbal short memory | 4.86 ± 1.83 | |
Working memory | 6.20 ± 2.03 | |
Verbal fluency | 30.84 ± 9.69 | |
Inductive reasoning | 4.08 ± 1.77 | |
Verbal long-term memory | 5.82 ± 1.75 | |
Total Score | 36.70 ± 9.75 |
Cognitive Performance | IA | FA | ∆CP | T | p | Glass’s Delta |
Prospective memory (n) | 0.86 ± 0.35 | 0.91 ± 0.29 | 0.05 ± 0.29 | 2.628 | 0.009 | 0.14 |
Verbal short memory (n) | 4.86 ± 0.83 | 5.32 ± 1.59 | 0.41 ± 1.99 | 3.395 | 0.001 | 0.55 |
Working memory (n) | 6.20 ± 2.02 | 6.64 ± 2.25 | 0.32 ± 2.04 | 2.633 | 0.009 | 0.22 |
Verbal fluency (n) | 30.84 ± 9.68 | 29.45 ± 11.26 | −0.51 ± 12.61 | −0.689 | 0.497 | −0.14 |
Inductive reasoning (n) | 4.08 ± 1.76 | 4.81 ± 1.88 | 0.62 ± 1.62 | 6.330 | <0.0001 | 0.41 |
Verbal long-term memory (n) | 5.82 ± 1.75 | 6.1 ± 1.56 | 0.18 ± 1.74 | 1.663 | 0.097 | 0.16 |
Total score (n) | 36.69 ± 9.75 | 40.28 ± 9.95 | 2.64 ± 7.14 | 6.135 | <0.0001 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.; Antunes, H.; Sabino, B.; Sousa, D.; Correia, A.L.; Alves, R.; Lopes, H. The Effect of Physical Activity Levels on Cognitive Performance: Research in Portuguese Adolescents. Sports 2024, 12, 146. https://doi.org/10.3390/sports12060146
Rodrigues A, Antunes H, Sabino B, Sousa D, Correia AL, Alves R, Lopes H. The Effect of Physical Activity Levels on Cognitive Performance: Research in Portuguese Adolescents. Sports. 2024; 12(6):146. https://doi.org/10.3390/sports12060146
Chicago/Turabian StyleRodrigues, Ana, Hélio Antunes, Bebiana Sabino, Duarte Sousa, Ana Luísa Correia, Ricardo Alves, and Hélder Lopes. 2024. "The Effect of Physical Activity Levels on Cognitive Performance: Research in Portuguese Adolescents" Sports 12, no. 6: 146. https://doi.org/10.3390/sports12060146
APA StyleRodrigues, A., Antunes, H., Sabino, B., Sousa, D., Correia, A. L., Alves, R., & Lopes, H. (2024). The Effect of Physical Activity Levels on Cognitive Performance: Research in Portuguese Adolescents. Sports, 12(6), 146. https://doi.org/10.3390/sports12060146